首页 | 本学科首页   官方微博 | 高级检索  
     


Optimized resistivity of p-type Si substrate for HIT solar cell with Al back surface field by computer simulation
Authors:L Zhao  HL Li  CL Zhou  HW Diao  WJ Wang
Affiliation:Laboratory of Solar Cell Technology, Institute of Electrical Engineering, The Chinese Academy of Sciences, No. 6 Beiertiao Zhongguancun, Haidian District, Beijing 100190, China
Abstract:For HIT (heterojunction with intrinsic thin-layer) solar cell with Al back surface field on p-type Si substrate, the impacts of substrate resistivity on the solar cell performance were investigated by utilizing AFORS-HET software as a numerical computer simulation tool. The results show that the optimized substrate resistivity (Rop) to obtain the maximal solar cell efficiency is relative to the bulk defect density, such as oxygen defect density (Dod), in the substrate and the interface defect density (Dit) on the interface of amorphous/crystalline Si heterojunction. The larger Dod or Dit is, the higher Rop is. The effect of Dit is more obvious. Rop is about 0.5 Ω cm for Dit = 1.0 × 1011/cm2, but is higher than 1.0 Ω cm for Dit = 1.0 × 1012/cm2. In order to obtain very excellent solar cell performance, Si substrate, with the resistivity of 0.5 Ω cm, Dod lower than 1.0 × 1010/cm3, and Dit lower than 1.0 × 1011/cm2, is preferred, which is different to the traditional opinion that 1.0 Ω cm resistivity is the best.
Keywords:HIT solar cell  Substrate resistivity  Simulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号