首页 | 本学科首页   官方微博 | 高级检索  
     

基于2D-Gabor与KLDA的特征提取
引用本文:张建明,杜丹,刘俊宁. 基于2D-Gabor与KLDA的特征提取[J]. 计算机工程, 2011, 37(15): 137-139. DOI: 10.3969/j.issn.1000-3428.2011.15.043
作者姓名:张建明  杜丹  刘俊宁
作者单位:江苏大学计算机科学与通信工程学院,江苏,镇江,212013
基金项目:国家自然科学基金,江苏省自然科学基金
摘    要:提出一种2D-Gabor小波与核线性鉴别分析(KLDA)相结合的特征提取方法。该方法对经过预处理的人脸图像进行多方向、多尺度的2D-Gabor滤波,将滤波后的图像看作独立样本加入原样本库中,对新样本利用KLDA方法进行二次特征提取,得到较理想的类内聚度和类间散度样本特征,再采用三阶近邻分类器进行特征分类处理。实验结果表明,该方法相比传统方法识别率更高,易于工程实现。

关 键 词:人脸识别  2D-Gabor小波  核线性鉴别分析  类内聚度  类间散度
收稿时间:2011-01-06

Feature Extraction Based on 2D-Gabor and Kernel Linear Discriminant Analysis
ZHANG Jian-ming,DU Dan,LIU Jun-ning. Feature Extraction Based on 2D-Gabor and Kernel Linear Discriminant Analysis[J]. Computer Engineering, 2011, 37(15): 137-139. DOI: 10.3969/j.issn.1000-3428.2011.15.043
Authors:ZHANG Jian-ming  DU Dan  LIU Jun-ning
Affiliation:(College of Computer Science and Communication Engineering,Jiangsu University,Zhenjiang 212013,China)
Abstract:This paper proposes a feature extraction method combining 2D-Gabor wavelet and Kernel Linear Discriminant Analysis(KLDA). The pretreated face images are filtered with multi-scale and multi-orientation, and the filtered images are added into the original face database as separate samples to increase the number of samples. The classical KLDA method is applied to extract features once more to obtain the ideal sample characteristics of class cohesion and between-class scatter. Third-order nearest neighbor classifier is used to classify the features. Experimental results indicate that the method can get a better performance and recognition rate, and it is easy to implement in projects.
Keywords:face recognition  2D-Gabor wavelet  Kernel Linear Discriminant Analysis(KLDA)  class cohesion  between-class scatter
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号