首页 | 本学科首页   官方微博 | 高级检索  
     


Sizing analysis of a combined cooling,heating, and power system for a small office building using a wood waste biomass‐fired Stirling engine
Authors:James Harrod  Pedro J. Mago  Rogelio Luck
Affiliation:Department of Mechanical Engineering, Mississippi State University, Starkville, Mississippi, U.S.A.
Abstract:When wood chips are available and used to fuel a combined cooling, heating, and power (CCHP) waste heat recovery system, they can represent an economically viable source of biomass energy that can meet a facility's electric and thermal demands. Using a Stirling engine as the CCHP prime mover provides several important advantages over conventional internal combustion engines including no additional processing of the waste wood chips, a potentially higher thermal efficiency, flexibility of fuel sources, and low maintenance. This study shows how the operational characteristics of a constant output, biomass‐fired, Stirling engine‐based CCHP system are affected by the performance of the individual components, including the prime mover, heat recovery system, auxiliary boiler, absorption chiller, and heating coil unit The results are assessed by examining the primary energy consumption and operational cost compared with a reference case. The analysis provides insight on the prime mover sizing and selection of each component to properly implement the system. In addition to examining the effects of each component, the effect of excess electricity production and buyback are considered. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:biomass‐fired stirling engine  CCHP systems  primary energy consumption
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号