首页 | 本学科首页   官方微博 | 高级检索  
     


Particle suspension in top-covered unbaffled tanks
Authors:A Brucato  A Cipollina  G Micale  F Scargiali  A Tamburini
Affiliation:Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Università di Palermo, Viale delle Scienze, Ed.6, 90128 Palermo, Italy
Abstract:Unbaffled stirred tanks are seldom employed in the process industry as they are considered poorer mixers than baffled vessels. However, they may be expected to provide significant advantages in a wide range of applications (e.g. crystallization, food and pharmaceutical processes, etc.), where the presence of baffles is often undesirable. In the present work solid–liquid suspension in an unbaffled stirred tank is investigated. The tank was equipped with a top-cover in order to avoid vortex formation. A novel experimental method (the “steady cone radius method”, SCRM) is proposed to determine experimentally the minimum impeller speed at which solids are completely suspended. Experimental Njs and power consumption data are provided over fairly wide ranges for particle size, density and concentration. Dependence of Njs on particle density and concentration is similar to that observed in baffled tank. Conversely, a negligible dependence of particle diameter on Njs is observed in the unbaffled tank, a difference from baffled vessels with important practical implications.Finally, the mechanical power required to achieve complete suspension in unbaffled tanks is shown to be much smaller than in baffled vessels. This, in conjunction with the previously ascertained excellent particle-fluid mass-transfer promotion, could make unbaffled tanks a best choice for many solid–liquid operations, where mass transfer is the main limiting factor.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号