首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of regeneration conditions on the cyclic performance of amine-grafted mesoporous silica for CO2 capture: An experimental and statistical study
Authors:Rodrigo Serna-Guerrero  Youssef Belmabkhout  Abdelhamid Sayari
Affiliation:Department of Chemical Engineering and Department of Chemistry, University of Ottawa, Ottawa, Canada K1N 6N5
Abstract:This work deals with the behavior of amine-grafted mesoporous silica (referred to as TRI-PE-MCM-41) throughout adsorption–desorption cycles in the presence of 5% CO2/N2 using various regeneration conditions in batch experiments. The criteria proposed to determine the optimum regeneration conditions are the working adsorption capacity, the rate of desorption and the change of adsorption capacity between consecutive cycles. Using a 23 factorial design of experiments, the impact on the performance of the adsorbent of different levels of temperature, pressure, and flow rate of purge gas during desorption was determined. It was found that all the parameters under study have a statistically significant influence on the working adsorption capacity, but only temperature is influential with respect to desorption rate. Regeneration using temperature swing was found to be attractive, as the highest CO2 adsorption capacity (1.95 mmol g?1) and the fastest desorption rate (9.82×10?4 mmol g?1 s?1) occurred when desorption was carried out at 150 °C. However, if vacuum is applied, regeneration can be achieved at a temperature as low as 70 °C with only a 13% penalty in terms of working adsorption capacity. It was also demonstrated that under the proper regeneration conditions, TRI-PE-MCM-41 is stable over 100 adsorption–desorption cycles.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号