首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进卷积神经网络的周界入侵检测方法
引用本文:张永良,张智勤,吴鸿韬,董灵平,周冰. 基于改进卷积神经网络的周界入侵检测方法[J]. 计算机科学, 2017, 44(3): 182-186
作者姓名:张永良  张智勤  吴鸿韬  董灵平  周冰
作者单位:浙江工业大学计算机科学与技术学院 杭州310024,浙江工业大学计算机科学与技术学院 杭州310024,河北工业大学计算机科学与软件学院 天津300130,浙江工业大学计算机科学与技术学院 杭州310024,浙江工业大学计算机科学与技术学院 杭州310024
基金项目:本文受浙江省教育厅项目(Y201329342),河北省科技计划项目(15210124),河北省高等学校科学技术研究项目(Z2015105)资助
摘    要:监控系统已经成为周界入侵防范的重要手段之一,但是目前局限于被动式监视。对此,提出一种通过对监控系统传回的视频图像进行人体目标识别进而实现主动周界入侵检测的方法。针对目前人体目标检测算法场景适用性较差的问题,提出一种基于改进卷积神经网络的行人检测算法,该方法在深层特征的基础上融入浅层特征,利用浅层特征校正深层特征在识别目标过小时的局限性,最后利用Softmax进行分类。实验结果证实,改进后的卷积神经网络对行人的姿态和适用场景都具有较高的鲁棒性,并且在INRIA库上的识别率为98.82%, 在NICTA库上的识别率为99.82%,在CVC库上的识别率为94.50%,在Daimler库上的识别率为99.92%。

关 键 词:智能视频分析  行人检测  卷积神经网络  周界入侵
收稿时间:2016-02-24
修稿时间:2016-05-26

Perimeter Intrusion Detection Based on Improved Convolution Neural Networks
ZHANG Yong-liang,ZHANG Zhi-qin,WU Hong-tao,DONG Ling-ping and ZHOU Bing. Perimeter Intrusion Detection Based on Improved Convolution Neural Networks[J]. Computer Science, 2017, 44(3): 182-186
Authors:ZHANG Yong-liang  ZHANG Zhi-qin  WU Hong-tao  DONG Ling-ping  ZHOU Bing
Affiliation:College of Computer Science & Technology,Zhejiang University of Technology,Hangzhou 310024,China,College of Computer Science & Technology,Zhejiang University of Technology,Hangzhou 310024,China,School of Computer Science & Engineering,Hebei University of Technology,Tianjin 300130,China,College of Computer Science & Technology,Zhejiang University of Technology,Hangzhou 310024,China and College of Computer Science & Technology,Zhejiang University of Technology,Hangzhou 310024,China
Abstract:Monitoring system has become one of the most important means for perimeter intrusion detection.But most of the existing monitoring systems are passive surveillance.In this paper,a method for active perimeter intrusion detection was proposed by identifying human targets in video images captured by monitoring systems.In order to enhance the robustness of different environment,this paper identified an improved convolution neural networks to realize an effective detection of human bodies with multiple postures captured by fixed cameras.Depth and shallow information are used to describe the pedestrian,so that it can improve the precision and robustness.Then,Softmax is used for classification.The experiment results confirm that the proposed algorithm has higher recognition rate for detecting human targets,which achieves recognition accuracy of 98.82% on INRIA database,99.82% on NICTA database,94.5% on CVC database and 99.92% on Daimler database,respectively.
Keywords:Intelligent video analysis  Pedestrian detection  Convolution neural networks  Perimeter intrusion
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号