首页 | 本学科首页   官方微博 | 高级检索  
     

一种SOM和GRNN结合的模式全自动分类新方法
引用本文:张俊本,李朝峰,居红云,聂百胜. 一种SOM和GRNN结合的模式全自动分类新方法[J]. 计算机工程与应用, 2007, 43(13): 49-51
作者姓名:张俊本  李朝峰  居红云  聂百胜
作者单位:江南大学,信息工程学院,江苏,无锡,214122;中国矿业大学,资源与安全工程学院,北京,100083
摘    要:非监督学习算法的分类精度通常很难令人满意,而监督的学习算法需要人工选取训练样本,这有时很难得到,并且其分类精度直接依赖于所选取的学习样本。针对这些缺陷,提出一种非监督自组织神经网络(SOMNN)和监督的广义回归网络(GRNN)结合的全自动模式分类新方法。新方法首先通过SOMNN将原始数据进行自动聚类,再用所得的聚类中心以及中心邻近数据点训练GRNN,然后根据GRNN的分类结果重新计算聚类中心,再根据新的聚类中心和中心邻近点训练GRNN,如此反复,直至得到稳定的中心为止。Iris数据,Wine数据的实验结果都验证了新方法的可行性。

关 键 词:自组织神经网络  广义回归网络  模式自动分类  粒子群优化算法
文章编号:1002-8331(2007)13-0049-03
收稿时间:2006-09-12
修稿时间:2006-12-01

A New Pattern automated Classification method based on SOM combining with GRNN
ZHANG Jun-ben,LI Chao-feng,JU Hong-yun,NIE Bai-sheng. A New Pattern automated Classification method based on SOM combining with GRNN[J]. Computer Engineering and Applications, 2007, 43(13): 49-51
Authors:ZHANG Jun-ben  LI Chao-feng  JU Hong-yun  NIE Bai-sheng
Affiliation:1.School of Information Engineering, Southern Yangtze University, Wuxi, Jiangsu 214122, China ;2.School of Resource and Safety Engineering,China University of Mining and Technology,Beijing 100083,China
Abstract:In unsupervised learning algorithm,classification results is often not satisfactory.However in supervised learning algorithm,training samples need to be chosen by manual,which is sometimes difficult,and moreover whose classification accuracy depend on the training samples.According to these limitations,this paper presents an automated pattern classification method of Self-Organizing Map Neural Network(SOMNN) combining with Generalized Regression Neural Network(GRNN).In new method at first original data points are partitioned by unsupervised SOM,and then from the clustering results,some labelled points nearer to each clustering center are chosen to train supervised GRNN.Then utilizing the decided GRNN model,we reclassify these original data points and gain new clustering results.At last from new clustering results,we choose some labelled points nearer to new clustering center to train and classify again,and so repeat until clustering center no longer changes.Experimental results for both Iris data and Wine data verify the validity of our method.
Keywords:SOM  GRNN  pattern automated classification  PSO algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号