首页 | 本学科首页   官方微博 | 高级检索  
     

基于磁梯度张量SVD 的磁性目标识别方法
引用本文:张 光. 基于磁梯度张量SVD 的磁性目标识别方法[J]. 兵工自动化, 2022, 41(5): 20-24. DOI: 10.7690/bgzdh.2022.05.005
作者姓名:张 光
作者单位:陆军炮兵防空兵学院士官学校,沈阳 110867
基金项目:国防科技重点实验室基金(水下测控技术重点实验室基金)(6142407190307)
摘    要:针对磁梯度张量单个分量对斜磁化多目标识别能力不足,受载体姿态影响较大的问题,提出基于磁梯度张量奇异值分解(singular value decomposition,SVD)的磁性目标识别方法。通过磁梯度张量矩阵的奇异值分解,提取奇异值的最大值作为磁性目标识别特征量,增强了对斜磁化多目标的识别能力,证明了磁梯度张量奇异值的张量不变量特性,克服了载体姿态变化对磁梯度张量识别的影响。仿真和实测结果表明,该识别方法能有效区分和识别斜磁化的多目标。

关 键 词:磁梯度张量  SVD  磁性目标  识别  张量不变量
收稿时间:2022-01-26
修稿时间:2022-02-25

Magnetic Target Recognition Method Based on SVD of Magnetic Gradient Tensor
Zhang Guang,Xu Xibao,Huang Yang,Liu Junqi. Magnetic Target Recognition Method Based on SVD of Magnetic Gradient Tensor[J]. Ordnance Industry Automation, 2022, 41(5): 20-24. DOI: 10.7690/bgzdh.2022.05.005
Authors:Zhang Guang  Xu Xibao  Huang Yang  Liu Junqi
Abstract:Aiming at the problem that the single component of magnetic gradient tensor has insufficient ability torecognize oblique magnetized multi-targets and is greatly affected by the carrier attitude, a magnetic target recognitionmethod based on singular value decomposition (SVD) of magnetic gradient tensor is proposed. Through the singular valuedecomposition of the magnetic gradient tensor matrix, the maximum of the singular value is extracted as the magnetic targetrecognition feature, which enhances the recognition ability of inclined-magnetized multi-target, proves the tensor invariantproperty of magnetic gradient tensor singular value, and overcomes the influence of carrier attitude change on magneticgradient tensor recognition. The simulation and experimental results show that the method can effectively distinguish andidentify multiple targets with oblique magnetization.
Keywords:magnetic gradient tensor   SVD   magnetic target   recognition   tensor invariant
本文献已被 万方数据 等数据库收录!
点击此处可从《兵工自动化》浏览原始摘要信息
点击此处可从《兵工自动化》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号