首页 | 本学科首页   官方微博 | 高级检索  
     


Planning for Regional Water System Sustainability Through Water Resources Security Assessment Under Uncertainties
Authors:Yizhong Chen  Li He  Hongwei Lu  Jing Li  Lixia Ren
Affiliation:1.State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin,China;2.School of Renewable Energy,North China Electric Power University,Beijing,China;3.Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research,Chinese Academy of Science,Beijing,China;4.Shanxi Institute of Energy,Shanxi,China
Abstract:A leader-follower relationship in multiple layers of decision makers under uncertainties is a critical challenge associated with water resources security (WRS). To address this problem, a credibility-based chance-constrained hierarchical programming model with WRS assessment is developed for regional water system sustainability planning. This model can deal with the sequential decision-making problem with different goals and preferences, and reflect uncertainties presented as fuzzy sets. The effectiveness of the developed model is demonstrated through a real-world water resources management system in Beijing, China. A leader-follower interactive solution algorithm based on satisfactory degree is utilized to improve computational efficiency. Results show the that: (a) surface water, groundwater, recycled water, and off water would account for 27.01, 27.44, 23.11, and 22.44% of the total water supplies, respectively; (b) the entire pollutant emissions and economic benefits would consequently decrease by 31.53 and 22.88% when the statue changes from quite safe to extremely far from safe; and (c) a high credibility level would correspond to low risks of insufficient water supply and overloaded pollutant emissions, which lowers economic benefits and pollutant emissions. By contrast, a low credibility level would decrease the limitations of constraints, which leads to high economic benefits and pollutant emissions, but system risk would be increased. These findings can aid different decision makers in identifying the desired strategies for regional water resources management under multiple uncertainties, and support the in-depth analysis of the interrelationships among water security, system efficiency, and credibility level.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号