首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of Using Remote Sensing Evapotranspiration Data in SWAT
Authors:Prem B Parajuli  Priyantha Jayakody  Ying Ouyang
Affiliation:1.Department of Agricultural and Biological Engineering,Mississippi State University,Mississippi State,USA;2.New South Wales Department of Primary Industries,Orange,Australia;3.USDA Forest Service,Mississippi State,USA
Abstract:This study applied a time series evapotranspiration (ET) data derived from the remote sensing to evaluate Soil and Water Assessment Tool (SWAT) model calibration, which is a unique method. The SWAT hydrologic model utilized monthly stream flow data from two US Geological Survey (USGS) stations within the Big Sunflower River Watershed (BSRW) in Northwestern, Mississippi. Surface energy balance algorithm for land (SEBAL), which utilized MODerate Resolution Imaging Spectro-radiometer (MODIS) to generate monthly ET time series data images were evaluated with the SWAT model. The SWAT hydrological model was calibrated and validated using monthly stream flow data with the default, flow only, ET only, and flow-ET modeling scenarios. The flow only and ET only modeling scenarios showed equally good model performances with the coefficient of determination (R2) and Nash Sutcliffe Efficiency (NSE) from 0.71 to 0.86 followed by flow-ET only scenario with the R2 and NSE from 0.66 to 0.83, and default scenario with R2 and NSE from 0.39 to 0.78 during model calibration and validation at Merigold and Sunflower gage stations within the watershed. The SWAT model over-predicted ET when compared with the Modis-based ET. The ET-based ET had the closest ET prediction (~8% over-prediction) as followed by flow-ET-based ET (~16%), default-based ET (~27%) and flow-based ET (~47%). The ET-based modeling scenario demonstrated consistently good model performance on streamflow and ET simulation in this study. The results of this study demonstrated use of Modis-based remote sensing data to evaluate the SWAT model streamflow and ET calibration and validation, which can be applied in watersheds with the lack of meteorological data.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号