首页 | 本学科首页   官方微博 | 高级检索  
     

基于硬件使用率和延时功耗的智能手机功耗模型
引用本文:苏静芳,吕勇强,李兴华,奉飞飞. 基于硬件使用率和延时功耗的智能手机功耗模型[J]. 软件学报, 2015, 26(S2): 189-197
作者姓名:苏静芳  吕勇强  李兴华  奉飞飞
作者单位:西安电子科技大学计算机学院, 陕西西安 710071;清华大学信息技术研究院, 北京 100084,清华大学信息技术研究院, 北京 100084,西安电子科技大学计算机学院, 陕西西安 710071,闪联信息技术工程中心有限公司, 北京 100089
基金项目:国家自然科学基金(61201357);国家核高基重大专项(2012ZX01039-004);国家科技支撑计划(2012BAH25B02)
摘    要:理解和优化智能手机的功耗已成为一个重要的研究领域,软件和硬件开发人员均需要一个动态的功耗评估工具来指导功耗优化,从而开发低功耗的应用程序和构建省电的系统.现有的工作已经提出多种功耗模型来评估功耗,但这些模型缺乏细化粒度和精确度.提出基于硬件使用率和延时功耗的智能手机功耗模型,细化了模型的硬件组件,加入了延时功耗,能够更加精确地评估实时功耗.该模型基于非线性回归结构,通过模块化目标设备的各个系统变量来确定模型,然后通过功耗测试用例测试进行模型辨识,确定各个功耗相关系数,最终将评估功耗与功耗测量设备实测数据进行对比.实验结果表明,在常用场景下,模型的平均绝对误差均小于4.6%,明显提高了模型精度.

关 键 词:智能手机  硬件使用率  延时功耗  功耗模型
收稿时间:2014-06-20
修稿时间:2014-08-20

Power Model for Smartphones Considering Hardware Utilization and Power Delay
SU Jing-Fang,L,#; Yong-Qiang,LI Xing-Hua and FENG Fei-Fei. Power Model for Smartphones Considering Hardware Utilization and Power Delay[J]. Journal of Software, 2015, 26(S2): 189-197
Authors:SU Jing-Fang,L&#   Yong-Qiang,LI Xing-Hua  FENG Fei-Fei
Affiliation:School of Computer Science, Xidian University, Xi'an 710071, China;School of Information Science and Technology, Tsinghua University, Beijing 100084, China,School of Information Science and Technology, Tsinghua University, Beijing 100084, China,School of Computer Science, Xidian University, Xi'an 710071, China and IGRS Information Technology Engineering Center Co. Ltd., Beijing 100089, China
Abstract:Understanding and optimizing the power consumption of smartphones has become an important research topic. It is necessary to have a dynamic power estimation tool for hardware and software developers so that they can develop energy-efficient applications and construct energy-efficient smartphone systems. Previous work has proposed various power models for estimating the power consumption. However, these models lack granularity and accuracy. In this paper, a power model for smartphones considering hardware utilization and power delay is proposed. The model makes each hardware component more fine-grained and includes the power delay. Therefore, it can more accurately estimate the real-time power consumption. The model is based on a nonlinear regression structure. First, the model is determined by making each system variable modular from the target device. Then, the specified model is identified by test cases and the final coefficients concerning the power consumption are confirmed. Finally, the estimated power is compared with the actual power measured. Experimental results demonstrate that the average absolute error of power model is less than 4.6% in common scenarios, which obviously improves the accuracy of evaluation.
Keywords:smartphone  hardware utilization  delay power  power model
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号