首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进蚁群算法和支持向量机的网页分类研究
引用本文:宋军涛,杜庆灵. 基于改进蚁群算法和支持向量机的网页分类研究[J]. 数字社区&智能家居, 2009, 0(35)
作者姓名:宋军涛  杜庆灵
作者单位:河南工业大学信息科学与工程学院;
基金项目:2007年公安部应用创新计划项目资助(2007YYCIZXHNST063)
摘    要:网页分类技术是web数据挖掘的一个重要分支,是基于自然语言处理技术和机器学习学习算法的一个典型的具体应用。基于统计学习理论和蚁群算法理论,该文提出了一种基于支持向量机和改进蚁群算法相结合的构造网页分类器的高效分类方法,实验结果证明了该方法的有效性和鲁棒性,弥补了仅利用支持向量机对于大样本训练集收敛慢的不足,具有较好的准确率和召唤率。

关 键 词:改进蚁群算法  网页分类  支持向量机  贡献函数  

Study of Categorization of Web-Page Based on Improved Ant Colony Algorithm and Support Vector Machine
SONG Jun-tao,DU Qing-ling. Study of Categorization of Web-Page Based on Improved Ant Colony Algorithm and Support Vector Machine[J]. Digital Community & Smart Home, 2009, 0(35)
Authors:SONG Jun-tao  DU Qing-ling
Affiliation:SONG Jun-tao,DU Qing-ling (Dept. of Information Science , Engineering,Henan University of Technology,Zhengzhou 450001,China)
Abstract:Web page categorization is an of web data mining, it is a typical application based on technology of natural language processing and machine learning. It is imperative to find a effective and efficient method for web page categorization. In this paper, a new method is proposed for web page categorization based on improved ant colony optimization algorithm (IACOA) and support vector machines (SVMs).The experimental results show that the method is effective and robust, only to make up for the use of support v...
Keywords:improved ant colony algorithm (IACA)  web page categorization  support vector machine (SVM)  contribution function  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号