首页 | 本学科首页   官方微博 | 高级检索  
     


Review Nano and macro-structured component fabrication by electron beam-physical vapor deposition (EB-PVD)
Authors:Email author" target="_blank">J?SinghEmail author  D E?Wolfe
Affiliation:(1) Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16804, USA
Abstract:The objective of this paper is to demonstrate the versatility of electron beam-physical vapor deposition (EB-PVD) technology in engineering new materials with controlled microstructure and microchemistry in the form of coatings. EB-PVD technology is being explored in forming net-shaped components for many applications including space, turbine, optical, biomedical and auto industry. Coatings are often applied on components to extend their performance and life under severe environmental conditions including thermal, corrosion, wear, and oxidation. In addition, coatings have been used in designing and developing sensors. Performance and properties of the coatings depend upon its composition, microstructure and deposition condition. This paper presents recent results of various materials including ceramic, metallic, and functionally graded coatings produced by EB-PVD. Simultaneous co-evaporation of multiple ingots of different compositions in the high energy EB-PVD chamber has brought considerable interest in the architecture of functional graded coatings, nano-laminated coatings and designing of new structural materials that could not be produced economically by conventional methods. In addition, high evaporation and condensate rate allowed fabricating precision net-shaped components with nanograined microstructure for various applications. This paper will also present the results of various metallic and ceramic coatings including chromium, titanium carbide (TiC), hafnium carbide (HfC), tantalum carbide (TaC), hafnium nitride (HfN), titanium-boron-carbonitride (TiBCN), and partially yttria stabilized zirconia (YSZ), and HfO2-based TBC coatings deposited by EB-PVD for various applications.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号