首页 | 本学科首页   官方微博 | 高级检索  
     


Isolation and characterization of complement receptor type 1 (CR1) storage vesicles from human neutrophils using antibodies to the cytoplasmic tail of CR1
Authors:A Kumar  E Wetzler  M Berger
Affiliation:Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
Abstract:Neutrophil (PMN) activation is associated with increased surface expression of several membrane proteins that are translocated from intracellular pools. Indirect evidence suggests that the intracellular storage pools of complement receptor type 1 (CR1) in resting PMN are distinct from traditional granules and may be the secretory vesicles in which albumin is also stored, but it is not known if this compartment is homogeneous or heterogeneous. To isolate and characterize the CR1-containing vesicles, we used antibodies against unique sequences in the cytoplasmic tail of CR1. Affinity-purified IgG was used to adsorb CR1 storage vesicles from the light membrane fraction (gamma-band) of nitrogen cavitates of resting PMN. The immunoadsorbent could quantitatively remove the CR1-containing vesicles, whereas control adsorbents with nonimmune IgG showed no specific binding of CR1. Immunoblots of specifically isolated vesicles also showed enrichment of albumin, decay-accelerating factor, Fc gammaRIII, and CR3; whereas HLA class I was not detectable in these vesicles. Enzyme assay of specifically isolated vesicles after treatment with Triton X-100 showed that these vesicles contained most of the cells' latent alkaline phosphatase. An additional population of vesicles containing albumin, but not CR1, and that did not bind to anti-CR1 adsorbent was also identified. Immunoelectron microscopy showed that the specifically isolated vesicles had mean diameters of 0.086 to 0.1 microm and stained positive for CR1 and albumin. These results indicate that CR1 storage vesicles can be isolated with antibodies against the cytoplasmic tail of CR1 and show that these vesicles also contain albumin as well as glycosylphosphatidyl inositol-anchored proteins. These results are most compatible with the hypothesis that CR1-containing vesicles have arisen by endocytic retrieval of proteins that had been on the plasma membrane.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号