首页 | 本学科首页   官方微博 | 高级检索  
     


Parts verification for multi-level-dependent demand manufacturing systems: a recognition and classification structure
Authors:S C L Koh  A Gunasekaran  S M Saad
Affiliation:(1) Management School, University of Sheffield, 9 Mappin Street, Sheffield, S1 4DT, UK;(2) Management Department, University of Massachusetts–Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747-2300, USA;(3) School of Engineering, Sheffield Hallam University, City Campus, Sheffield, S1 1WB, UK
Abstract:This research has developed and implemented a part recognition and classification structure to execute parts verification in a multi-level-dependent demand manufacturing system. The part-recognition algorithm enables the parent and child relationship between parts to be recognised in a finite-capacitated manufacturing system. This algorithm was developed using the SIMAN simulation language and implemented in a multi-level-dependent demand manufacturing simulation model. The part-classification structure enables the modelling of a multi-level-dependent demand manufacturing system between parts to be carried out effectively. The part-classification structure was programmed using Visual Basic Application (VBA) and was integrated into the work-to-list generated from a simulated materials requirements planning (MRP) model. This part-classification structure was then implemented in the multi-level-dependent demand manufacturing simulation model. Two stages of implementation, namely, parameterisation and execution, of the part recognition and classification structure were carried out. A real case study was used and five detailed steps of execution were processed. Simulation experiments and MRP were run to verify and validate the part recognition and classification structure. The results led to the conclusion that implementation of the recognition and classification structure has effectively verified the correct parts and sub-assemblies used for the correct product and order. No parts nor sub-assembly shortages were found, and the quantity required was produced. The scheduled release for some orders was delayed due to overload of the required resources. When the loading is normal, all scheduled release timing is adhered to. The recognition and classification structure has a robust design; hence, it can be easily adapted to new system parameters to study different or more complex cases.
Keywords:Parts verification  Manufacturing systems  MRP
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号