首页 | 本学科首页   官方微博 | 高级检索  
     


Exploring and enhancing relaxation-based sodium MRI contrast
Authors:Robert W Stobbe  Christian Beaulieu
Affiliation:1. Department of Biomedical Engineering, Faculty of Medicine and Dentistry, 1098 Research Transition Facility, University of Alberta, Edmonton, AB, T6G 2V2, Canada
Abstract:

Object

Sodium MRI is typically concerned with measuring tissue sodium concentration. This requires the minimization of relaxation weighting. However, 23Na relaxation may itself be interesting to explore, given an underlying mechanism (i.e. the electric-quadrupole-moment–electric-field-gradient interaction) that differs from 1H. A new sodium sequence was developed to enhance 23Na relaxation contrast without decreasing signal-to-noise ratio.

Materials and Methods

The new sequence, labeled Projection Acquisition in the steady-state with Coherent MAgNetization (PACMAN), uses gradient refocusing of transverse magnetization following readout, a short repetition time, and a long radiofrequency excitation pulse. It was developed using simulation, verified in model environments (saline and agar), and evaluated in the brain of three healthy adult volunteers.

Results

Projection Acquisition in the steady-state with Coherent MAgNetization generates a large positive contrast-to-noise ratio (CNR) between saline and agar, matching simulation-based design. In addition to enhanced CNR between cerebral spinal fluid and brain tissue in vivo, PACMAN develops substantial contrast between gray and white matter. Further simulation shows that PACMAN has a ln(T 2f/T 1) contrast dependence (where T 2f is the fast component of 23Na T 2), as well as residual quadrupole interaction dependence.

Conclusion

The relaxation dependence of PACMAN sodium MRI may provide contrast related to macromolecular tissue structure.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号