首页 | 本学科首页   官方微博 | 高级检索  
     


Novel hydrogels based on a high‐molar‐mass water‐soluble dimethacrylate monomer
Authors:Silvana V Asmussen  Maria L Gomez  Claudia I Vallo
Affiliation:1. Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina;2. Departamento de Química, Universidad Nacional de Río Cuarto y CONICET, Río Cuarto, Argentina
Abstract:This report describes the preparation and swelling behaviour of novel hydrogels based on a water‐soluble dimethacrylate monomer (EBisEMA), which is characterized by a relatively high molar mass (Mn ~ 1700 g mol?1) and contains a high proportion of aliphatic ether bonds in its structure. This feature results in moderately crosslinked and flexible polymer networks. Significant differences were observed in degree of swelling, depending on the synthesis method employed to obtain the hydrogels. The equilibrium water sorption of EBisEMA photopolymerized in bulk was 68 wt% while that of EBisEMA photopolymerized in aqueous solution (0.5 g mL?1) was 104 wt%. Thiol–methacrylate hydrogels were prepared by visible light photopolymerization of EBisEMA with a tetrafunctional thiol (PETMP) at various EBisEMA‐to‐PETMP molar ratios. These hydrogels contained unreacted thiol groups because of a faster homopolymerization reaction of EBisEMA. Hydrogels were also prepared in bulk by propylamine‐catalysed Michael addition reaction. No significant differences in swelling were observed between EBisEMA homopolymer and photocured EBisEMA–PETMP copolymer. Conversely, a marked increase in water uptake (110 wt%) was observed in the EBisEMA–PETMP hydrogels prepared by the Michael addition reaction catalysed by propylamine. These trends are explained in terms of a balance between the mass fraction of hydrophilic groups and the crosslinking density of the network. EBisEMA–PETMP hydrogels formulated with thiol in excess showed a noticeable tendency to adhere to diverse substrates, including paper, metals, glass and skin. This feature makes them especially attractive in applications for which adhesion is particularly critical such as dermatological patches. © 2018 Society of Chemical Industry
Keywords:hydrogel  methacrylate  thiol  photopolymerization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号