首页 | 本学科首页   官方微博 | 高级检索  
     


Improving the interfacial adhesion in a new renewable resource-based biocomposites from biofuel coproduct and biodegradable plastic
Authors:Nima Zarrinbakhsh  Amar K Mohanty  Manjusri Misra
Affiliation:1. School of Engineering, University of Guelph, Thornbrough Building, Guelph, ON, N1G 2W1, Canada
2. Department of Plant Agriculture, Bioproducts Discovery and Development Centre, University of Guelph, Crop Science Building, Guelph, ON, N1G 2W1, Canada
Abstract:Biocomposites of a biopolymer and the coproduct of corn bioethanol industry, dried distillers’ grains with solubles (DDGS), were produced by reactive melt extrusion and injection molding. The biopolymer matrix was a blend of polyhydroxy(butyrate-co-valrerate), PHBV, and poly(butylene adipate-co-terphthalate), PBAT. The effect of compatibilizer, polymeric methylene diphenyl diisocyanate (PMDI), and corn oil lubricant was studied. The change in melt processing force suggested the occurrence of chemical reactions during the processing. This hypothesis was further investigated by infrared spectroscopy by which the formation of urethane and urea bonds between DDGS and polymeric matrix was approved. Dynamic mechanical analysis confirmed the occurrence of crosslinks at PBAT–PHBV interface showing that the tan δ curves for PBAT and PHBV of the matrix shifted slightly towards each other. Moreover, the calculated parameter of interaction, A, from tan δ curves admitted the stronger bond at the DDGS–matrix interface as a result of addition of PMDI compatibilizer. Also, scanning electron microscopy images revealed improved interfacial adhesion at the DDGS–matrix interface as well as PBAT–PHBV interface within the matrix itself. The obtained crosslinked interfaces resulted in improvement in the strength, modulus, and elongation-at-break of biocomposites. Moreover, a synergism of PMDI and corn oil effects led to a dramatic improvement in impact strength of this biocomposite system so that the respective value for the prepared DDGS biocomposite increased from 75 to 212 J/m with addition of 1 % of PMDI and 3 % of corn oil.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号