首页 | 本学科首页   官方微博 | 高级检索  
     


Fabrication and luminescence properties of YF3:Eu3+ hollow nanofibers via coaxial electrospinning combined with fluorination technique
Authors:Dan Li  Jinxian Wang  Xiangting Dong  Wensheng Yu  Guixia Liu
Affiliation:1. Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
Abstract:Polyvinyl pyrrolidone (PVP)–PVP/Y(NO3)3 + Eu(NO3)3] core–sheath composite nanofibers were prepared by coaxial electrospinning, and then Y2O3:Eu3+ hollow nanofibers were synthesized by calcination of the as-prepared composite nanofibers. For the first time, YF3:Eu3+ hollow nanofibers were successfully fabricated by fluorination of the Y2O3:Eu3+ hollow nanofibers via a double-crucible method using NH4HF2 as fluorinating agent. The morphology and properties of the products were investigated in detail by X-ray diffraction, scanning electron microscope (SEM), transmission electron microscope (TEM), and fluorescence spectrometer. YF3:Eu3+ hollow nanofibers were pure orthorhombic phase with space group Pnma and were hollow-centered structure with the mean diameter of 211 ± 29 nm. Fluorescence emission peaks of Eu3+ in the YF3:Eu3+ hollow nanofibers were observed and assigned to the energy levels transitions of 5D0 → 7F1 (587 and 593 nm), 5D0 → 7F2 (615 and 620 nm), and the 5D0 → 7F1 hypersensitive transition at 593 nm was the dominant emission peak. Moreover, the emitting colors of YF3:Eu3+ hollow nanofibers were located in the red region in CIE chromaticity coordinates diagram. The luminescent intensity of YF3:Eu3+ hollow nanofibers was increased remarkably with the increasing doping concentration of Eu3+ ions and reached a maximum at 7 mol% of Eu3+. This preparation technique could be applied to prepare other rare earth fluoride hollow nanofibers.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号