首页 | 本学科首页   官方微博 | 高级检索  
     


Three-dimensional analysis of microwave generated plasmas with extended planar laser-induced fluorescence
Authors:Stopper U  Lindner P  Schumacher U
Affiliation:Institut für Plasmaforschung Pfaffenwaldring, Stuttgart, Germany. ulrich.stopper@dlr.de
Abstract:We present the development and application of a diagnostic system for the analysis of microwave generated low-pressure plasmas, which might also be used for the investigation of the edge regions in magnetically confined fusion plasmas. Our method uses planar laser-induced fluorescence, which is produced by excitation of neutral metastable atoms through a short, intense, pulsed laser. The beam expansion optics consist of an uncommon setup of four lenses. By controlled shifting of an element of the optics sideways, the location of the laser sheet in the plasma is scanned perpendicular to the excitation plane. Together with a spectrometer observing different observation volumes along the beam path, we are able to map absolute three-dimensional (3D) population density distributions of the metastable ((2)P(12) (o)) 3s12](0) (o) state of Ne I in an electron cyclotron resonance heating (ECRH) plasma. This optical tomography system was used to study the influence of the microwave power and mode on the spatial structure of the plasma. The results show that the population density of the neutral neon in this metastable state is found to be in the range of 10(16) m(-3), and that its spatial distribution is associated with the 3D structure of the magnetic field. We also report that the spatial distribution strongly varies with the mode structure, which depends on the microwave power.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号