首页 | 本学科首页   官方微博 | 高级检索  
     

复合材料有效弹性模量的上、下限的求解
引用本文:杨大鹏,刘新田. 复合材料有效弹性模量的上、下限的求解[J]. 郑州大学学报(工学版), 2002, 23(2): 106-109
作者姓名:杨大鹏  刘新田
作者单位:郑州大学材料工程学院,河南,郑州,450002
基金项目:河南省自然科学基金资助项目(2000430010)
摘    要:计算复合材料有效弹性模量上、下限的方法中 ,Voigt和Reuss的上、下限近似解及Hashin和Shtrikman的上、下限计算公式较为精确 ,但Voigt-Reuss近似解通常忽略了各向异性非均匀体的研究 ,是一个不全面的结果 .而Hashin和Shtrikman未能准确运用变分法研究应变能的极值条件 .针对各向异性非均匀体 ,采用变分法及能量极值原理进行分析 ,得出了一个比Voight -Reuss和Hashin -Shtrikman上、下限近似解更为精确和合理的上、下限计算公式

关 键 词:有效弹性模量  Voigt-Reuss  Hashin-Shtrikman  上限  下限
文章编号:1671-6833(2002)02-0106-04
修稿时间:2001-12-02

Calculation of the Upper Limit or Lower Limit of Efficacious Modulus of Elasticity of Compound Materials
YANG Da-peng,LIU Xin-tian. Calculation of the Upper Limit or Lower Limit of Efficacious Modulus of Elasticity of Compound Materials[J]. Journal of Zhengzhou University: Eng Sci, 2002, 23(2): 106-109
Authors:YANG Da-peng  LIU Xin-tian
Abstract:At present, the approximate solution of Voigt and Reuss's upper limit or lower limit and the calculating formula of Hashin and Shtrikman's upper limit or lower limit are accurate. They are always utilized and adopted by materials science researcher.But the study of non-well-distributed substance of differency in nature in every direction has been ignored in the approximate solution of Voigt and Reuss, and as a result, it is not a overall conclusion. And Hashin and Shtrikman have not precisely wield calculus of variations to discuss the extreme value conditions of strain enery.In this paper, we apply calculus of variations and energy extreme value principle to analysis, primarily aiming at non-well-distributed substance of differency in nature.And we have acquired an improved calulating formula which is more accurate and more reasonable than Voigt-Reuss and Hashin-Shritman calculating formula.
Keywords:efficacious modulus of elasticity  Voigt-Reuss  Hashin-Shtrikman  upper limit  lower limit
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号