首页 | 本学科首页   官方微博 | 高级检索  
     


Singlet oxygen involvement in ultraviolet (254 nm) radiation-induced formation of 8-hydroxy-deoxyguanosine in DNA
Authors:H Wei  Q Cai  R Rahn  X Zhang
Affiliation:Department of Dermatology, Mount Sinai School of Medicine, New York, NY 10029, USA.
Abstract:In the present article, we report that ultraviolet (UV 254 nm) radiation substantially induced the formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in purified DNA. The formation of 8-OHdG, a hallmarker of oxidative DNA damage, increased linearly up to 25 kJ/m2 and was dependent on the presence of oxygen in the solution. Deoxygenation by nitrogen significantly reduced the yield of 8-OHdG by UV radiation, whereas oxygenation with 100% oxygen substantially enhanced the yield. The hydroxyl radical (HO.) scavenger dimethysulfoxide (DMSO) dramatically quenched the formation of 8-OHdG by the ionizing radiation and Fenton reaction, but enhanced the formation of UV-induced 8-OHdG. Further studies showed that DMSO and mannitol, two predominant HO. scavengers, enhanced the levels of UV-induced 8-OHdG in a dose-dependent fashion, suggesting that UV-induced 8-OHdG is independent of the generation of HO.. The use of deuterium oxide (D2O), which prolongs the half life of singlet oxygen (1O2), substantially enhanced the yield of 8-OHdG by UV radiation, but not that by Fenton reaction. In contrast, sodium azide, a more and less specific 1O2 quencher, substantially reduced the levels of 8-OHdG by both UV radiation and Fenton reaction, indicating that sodium azide lacks the quenching specificity of 1O2 and HO.. It is proposed that UV induced 8-OHdG proceeds through a singlet oxygen involvement mechanism, rather than the generation of hydroxyl radicals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号