首页 | 本学科首页   官方微博 | 高级检索  
     


Conductivity enhancement of silver filled polymer composites through electric field alignment
Authors:GK Johnsen  M Knaapila  ØG Martinsen  G Helgesen
Affiliation:1. Physics Department, Institute for Energy Technology, NO-2027 Kjeller, Norway;2. Department of Physics, University of Oslo, NO-0316 Oslo, Norway;3. Department of Clinical and Biomedical Engineering, Oslo University Hospital, Rikshospitalet, Norway
Abstract:We show how an alternating electric field can be used to align silver micron or sub-micron sized particles into microscopic wires in diverse polymer matrices based on the dielectrophoretic effect. The electric field is set by an electrode pair and the wires form conductive pathways through the matrix, bridging these electrodes electrically. The matrix is cured after alignment, locking wires in permanent pathways within the polymer. The wires are then characterized by ac impedance spectroscopy. The alignment can take place either in-plane or out-of-plane, and yields a directional conductivity in the alignment direction parallel to the electric field lines. The samples can be centimeters wide containing thousands of wires in parallel, but even an individual wire can be grown and controlled. The initial mixture contains less than 1 vol.% of silver and is an electrical insulator. The bulk conductivity enhancement, due to the alignment, may be 5 orders of magnitude, typically from 1 × 10−5 S/m to 1 S/m as the particle alignment converts the sample conductivity from polymer dominated to silver dominated. For the aligned isolated silver wires, the jump in conductivity, confined to the volume filled by the wire can be seen to be as high as 9–10 orders of magnitude, resulting in conductivities as high as 1 × 105 S/m, thus approaching those of pure metal. This technique offers new ways on how e.g. conducting polymer composites and conducting glues could be produced.
Keywords:A  Polymer&ndash  matrix composites  A  Metals  B  Electrical properties  C  Anisotropy  D  Optical microscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号