首页 | 本学科首页   官方微博 | 高级检索  
     


Phase morphology of nanofibre interlayers: Critical factor for toughening carbon/epoxy composites
Authors:Jin Zhang  Tao Yang  Tong Lin  Chun H Wang
Affiliation:1. Sir Lawrence Wackett Aerospace Research Centre, School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, VIC 3083, Australia;2. Centre for Material and Fibre Innovation, Institute for Technology, Research and Innovation, Deakin University, Geelong, VIC 3217, Australia
Abstract:Electrospun thermoplastic nanofibres were employed to toughen carbon/epoxy composites by direct deposition on carbon fibre fabrics, prior to resin impregnation and curing. The toughening mechanism was investigated with respect to the critical role of phase morphology on the toughening effect in carbon/epoxy composites. The influences of solubility in epoxy and melting characteristics of thermoplastics were studied towards their effects on phase structure and delamination resistance. For the three different thermoplastic nanofibre interlayers used in this work, i.e. poly(ε-caprolactone) (PCL), poly(vinylidene fluoride) (PVDF) and polyacrylonitrile (PAN) nanofibre interlayers, only PCL nanofibres produced toughening. Although cylinder-shaped fibrous macrophases existed in all three interlayer regions, only PCL nanofibres had polymerisation-induced phase separation with epoxy, forming ductile thermoplastic-rich particulate microphases on the delamination plane. These findings clearly show that the polymerisation-induced phase separation is critical to the interlayer toughening by thermoplastic nanofibres. An optimal concentration (15 wt.%) of PCL solution for electrospinning was found to produce composites with enhanced mode I interlaminar fracture toughness (GIC), stable crack growth and maintained flexural strength and modulus.
Keywords:A  Structural composites  B  Fracture toughness  C  Crack  D  Fractography  E  Electro-spinning
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号