首页 | 本学科首页   官方微博 | 高级检索  
     

基于子区域相似度的医学图像分割算法
引用本文:党建武,杨旭,王阳萍. 基于子区域相似度的医学图像分割算法[J]. 计算机应用, 2010, 30(9): 2458-2460
作者姓名:党建武  杨旭  王阳萍
作者单位:1. 兰州交通大学电子与信息工程学院2. 兰州交通大学 电子与信息工程学院
基金项目:国家863计划项目,国家自然科学基金资助项目,甘肃省科技攻关计划项目,甘肃省自然科学基金资助项目 
摘    要:将传统的区域生长算法思想融入到一种轮廓线逼近方法中。通过定义子区域的相似度准则,利用围绕像素的子区域的统计相似性,作为一个初始多边形轮廓演化的驱动因子,从粗到细,实现了对目标区域的逼近分割。实验表明,所提算法具有较好的抗噪性和较高的分割效率,可以有效分割出医学图像中的目标区域。

关 键 词:图像分割  子区域相似度  轮廓逼近  区域生长  
收稿时间:2010-03-17
修稿时间:2010-05-10

New medical image segmentation algorithm based on subregion similarity
DANG Jian-wu,YANG Xu,WANG Yang-ping. New medical image segmentation algorithm based on subregion similarity[J]. Journal of Computer Applications, 2010, 30(9): 2458-2460
Authors:DANG Jian-wu  YANG Xu  WANG Yang-ping
Abstract:Introducing the traditional region growing method into a contour approximating method, a new segmentation algorithm based on subregion similarity was presented. Firstly, an initial polygon contour was brought in by human-computer interactive process. Then the region of interest was obtained by using a sub-region similarity which served as driving force of the contour evolution. The experimental results show that the algorithm is of more anti-noise ability than the region growing method, and can divide up the region of interest efficiently.
Keywords:image segmentation   sub-region similarity   contour approximating   region growing
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号