首页 | 本学科首页   官方微博 | 高级检索  
     


A comparative study of two approaches for supporting optimal network location queries
Authors:Parisa Ghaemi  Kaveh Shahabi  John P Wilson  Farnoush Banaei-Kashani
Affiliation:1. Computer Science Department, University of Southern California, Los Angeles, CA, 90089, USA
2. Spatial Sciences Institute, University of Southern California, Los Angeles, CA, 90089, USA
Abstract:Given a set S of sites and a set O of weighted objects, an optimal location query finds the location(s) where introducing a new site maximizes the total weight of the objects that are closer to the new site than to any other site. With such a query, for instance, a franchise corporation (e.g., McDonald’s) can find a location to open a new store such that the number of potential store customers (i.e., people living close to the store) is maximized. Optimal location queries are computationally complex to compute and require efficient solutions that scale with large datasets. Previously, two specific approaches have been proposed for efficient computation of optimal location queries. However, they both assume p-norm distance (namely, L1 and L2/Euclidean); hence, they are not applicable where sites and objects are located on spatial networks. In this article, we focus on optimal network location (ONL) queries, i.e., optimal location queries in which objects and sites reside on a spatial network. We introduce two complementary approaches, namely EONL (short for Expansion-based ONL) and BONL (short for Bound-based ONL), which enable efficient computation of ONL queries with datasets of uniform and skewed distributions, respectively. Moreover, with an extensive experimental study we verify and compare the efficiency of our proposed approaches with real world datasets, and we demonstrate the importance of considering network distance (rather than p-norm distance) with ONL queries.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号