首页 | 本学科首页   官方微博 | 高级检索  
     


Soil N mineralization in a dairy production system with grass and forage crops
Authors:J Verloop  G J Hilhorst  J Oenema  H Van Keulen  L B J Sebek  M K Van Ittersum
Affiliation:1. Plant Research International, PO Box 616, 6700 AP, Wageningen, The Netherlands
2. Wageningen UR Livestock Research, Lelystad, The Netherlands
4. Wageningen, The Netherlands
3. Plant Production Systems, Wageningen University, Wageningen, The Netherlands
Abstract:This paper describes the dynamics of soil N mineralization in the experimental intensive dairy farming system ‘De Marke’ on a dry sandy soil in the Netherlands. We hypothesized that knowledge of the effects of crop rotation on soil N mineralization and of the spatial and temporal variability of soil N mineralization in a farming system can be used to better synchronize N application with crop N requirements, and hence to increase the recovery of applied N and to reduce N losses. Soil N mineralization was recorded continuously in the soil layer 0–0.30 m, from 1992 to 2005, using a sequential in situ coring technique on six observation plots, of which two were located in permanent grassland and four in crop rotations with a 3 year grassland phase and an arable phase of 3 or 5 years, dominated by maize. Average annual soil N mineralization was highest under permanent grassland: 381 kg ha?1 and lowest under ≥3rd years arable crops: 184 kg ha?1. In temporary grassland, soil N mineralization increased in the order: 1st year, 2nd year, 3rd year grassland and in arable crops after grassland mineralization decreased in the order: 1st year, 2nd year, ≥3rd years. Total mineral N input, i.e. the sum of N mineralization and mineral N supply to soil, exceeded crop N requirements in 1st year maize and was lower than the requirements in 1st year temporary grassland. N mineralization in winter, outside the growing season, was 77 kg ha?1 in maize and 60 kg ha?1 in grassland. This points at the importance of a suitable catch crop to reduce the susceptibility to N leaching. Temporal and spatial variability of soil N mineralization was high and could not be related to known field conditions. This limits the extent to which N fertilization can be adjusted to soil N mineralization. Variability increased with the magnitude of soil N mineralization. Hence, situations with high soil N mineralization may be associated with high risks for N losses and to reduce these risks a strong build-up of soil organic N should be avoided. This might be achieved, for instance, by fermenting slurry before application on farmland to enhance the fraction mineral N in slurry at the expense of organic N.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号