首页 | 本学科首页   官方微博 | 高级检索  
     

基于人工神经网络的超临界小火焰模型研究
引用本文:高正伟,金台,宋昌成,罗坤,樊建人. 基于人工神经网络的超临界小火焰模型研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1968-1977. DOI: 10.3785/j.issn.1008-973X.2021.10.019
作者姓名:高正伟  金台  宋昌成  罗坤  樊建人
作者单位:1. 浙江大学 能源清洁利用国家重点实验室,浙江 杭州 3100272. 浙江大学 航空航天学院,浙江 杭州 310027
基金项目:国家重点研发计划资助项目(2016YFB0600102)
摘    要:为了解决超临界小火焰燃烧模型数据库过于庞大,导致计算机内存不足和取值性能下降的问题,提出使用人工神经网络(ANN)进行建库的超临界小火焰/过程变量模型FPV-ANN. 在先验性分析及在超临界水热火焰的大涡模拟计算中发现,FPV-ANN方法在温度、组分和其他目标变量的分布与传统FPV方法得到的结果吻合,说明FPV-ANN方法的准确性与传统FPV方法一致. 由于人工神经网络小火焰库大小只有传统库的1%,FPV-ANN方法在大规模并行计算中消耗更少的计算机内存. FPV-ANN方法的计算速度比传统FPV方法提升了30%. 可以看出,提出的FPV-ANN方法具有更好的计算性能.

关 键 词:小火焰模型  燃烧模拟  人工神经网络(ANN)  小火焰库建库方法  计算性能  

Application of artificial neural networks to supercritical flamelet model
Zheng-wei GAO,Tai JIN,Chang-cheng SONG,Kun LUO,Jian-ren FAN. Application of artificial neural networks to supercritical flamelet model[J]. Journal of Zhejiang University(Engineering Science), 2021, 55(10): 1968-1977. DOI: 10.3785/j.issn.1008-973X.2021.10.019
Authors:Zheng-wei GAO  Tai JIN  Chang-cheng SONG  Kun LUO  Jian-ren FAN
Abstract:Artificial neural networks (ANN) were utilized to build the library for the flamelet/progress variable (FPV) model and develop the FPV-ANN approach aiming at the problem that the enlarged lookup tables of the flamelet-based combustion model make the computer memory insufficient and slow down the interpolation process. Both the priori analysis and the large-eddy simulation of supercritical hydrothermal flames show that the distributions of temperature, species and other target variables obtained by FPV-ANN and classical FPV method achieve overall good agreement, verifying the accuracy of the FPV-ANN approach. Since the size of the ANN library is only 1% of the classical library, the use of FPV-ANN approach can produce a significant reduction in computer memory consumption during the large-scale parallel simulation. The computational speed of FPV-ANN approach is 30% faster than the classical FPV approach, which confirms that FPV-ANN approach has better computational performance.
Keywords:flamelet model  combustion simulation  artificial neural network (ANN)  flamelet library construction method  computational performance  
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号