首页 | 本学科首页   官方微博 | 高级检索  
     

加入自注意力机制的BERT命名实体识别模型
引用本文:毛明毅1,吴晨1,钟义信2,陈志成2. 加入自注意力机制的BERT命名实体识别模型[J]. 智能系统学报, 2020, 15(4): 772-779. DOI: 10.11992/tis.202003003
作者姓名:毛明毅1  吴晨1  钟义信2  陈志成2
作者单位:1. 北京工商大学 计算机与信息工程学院,北京 100048;2. 北京邮电大学 计算机学院,北京 100876
摘    要:命名实体识别属于自然语言处理领域词法分析中的一部分,是计算机正确理解自然语言的基础。为了加强模型对命名实体的识别效果,本文使用预训练模型BERT(bidirectional encoder representation from transformers)作为模型的嵌入层,并针对BERT微调训练对计算机性能要求较高的问题,采用了固定参数嵌入的方式对BERT进行应用,搭建了BERT-BiLSTM-CRF模型。并在该模型的基础上进行了两种改进实验。方法一,继续增加自注意力(self-attention)层,实验结果显示,自注意力层的加入对模型的识别效果提升不明显。方法二,减小BERT模型嵌入层数。实验结果显示,适度减少BERT嵌入层数能够提升模型的命名实体识别准确性,同时又节约了模型的整体训练时间。采用9层嵌入时,在MSRA中文数据集上F1值提升至94.79%,在Weibo中文数据集上F1值达到了68.82%。

关 键 词:命名实体识别  BERT  自注意力机制  深度学习  条件随机场  自然语言处理  双向长短期记忆网络  序列标注

BERT named entity recognition model with self-attention mechanism
MAO Mingyi1,WU Chen1,ZHONG Yixin2,CHEN Zhicheng2. BERT named entity recognition model with self-attention mechanism[J]. CAAL Transactions on Intelligent Systems, 2020, 15(4): 772-779. DOI: 10.11992/tis.202003003
Authors:MAO Mingyi1  WU Chen1  ZHONG Yixin2  CHEN Zhicheng2
Affiliation:1. School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China;2. School of Computer, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract:Named entity recognition is a part of lexical analysis in the field of natural language processing. It is the basis for a computer to correctly understand natural language. In order to strengthen the recognition effect of the model on named entities, in this study, the pre-trained model BERT (bidirectional encoder representation from transformers) was used as the embedding layer of the model, and fixed parameter embedding was adopted to solve the problem of high computer performance required for BERT fine-tuning training. A BERT-BiLSTM-CRF model was built, and on the basis of this model, two improved experiments were carried out. Method one is to continue to add a self-attention layer. Experimental results show that the addition of the self-attention layer does not significantly improve the recognition effect of the model. Method two is to reduce the number of embedding layers of the BERT model. Experimental results show that moderately reducing the number of BERT embedding layers can improve the model’s named entity recognition accuracy, while saving the overall training time of the model. When using 9-layer embedding, thevalue on the MSRA Chinese data set increased to 94.79%, and thevalue on the Weibo Chinese data set reached 68.82%.
Keywords:named entity recognition   bidirectional encoder representation from transformers   self-attention mechanism   deep learning   conditional random field   natural language processing   bi-directional long short-term memory   sequence tagging
点击此处可从《智能系统学报》浏览原始摘要信息
点击此处可从《智能系统学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号