首页 | 本学科首页   官方微博 | 高级检索  
     

自适应邻域选择的数据可分性降维方法
引用本文:李冬睿,许统德. 自适应邻域选择的数据可分性降维方法[J]. 计算机应用, 2012, 32(8): 2253-2257. DOI: 10.3724/SP.J.1087.2012.02253
作者姓名:李冬睿  许统德
作者单位:1. 广东农工商职业技术学院 计算机系,广州 5105072. 广东农工商职业技术学院 教务处,广州 510507
摘    要:针对现有基于流形学习的降维方法对局部邻域大小选择的敏感性,且降至低维后的数据不具有很好的可分性,提出一种自适应邻域选择的数据可分性降维方法。该方法通过估计数据的本征维度和局部切方向来自适应地选择每一样本点的邻域大小;同时,使用映射数据时的聚类信息来汇聚相似的样本点,保证降维后的数据具有良好的可分性,使之实现更好的降维效果。实验结果表明,在人工生成的数据集上,新方法获得了较好的嵌入结果;并且在人脸的可视化分类和图像检索中得到了期望的结果。

关 键 词:高维数据  降维  流形学习  局部邻域  本征维度  局部切方向  
收稿时间:2012-01-20
修稿时间:2012-03-19

Dimensionality reduction method with data separability based on adaptive neighborhood selection
LI Dong-rui , XU Tong-de. Dimensionality reduction method with data separability based on adaptive neighborhood selection[J]. Journal of Computer Applications, 2012, 32(8): 2253-2257. DOI: 10.3724/SP.J.1087.2012.02253
Authors:LI Dong-rui    XU Tong-de
Affiliation:1. Department of Computer, Guangdong AIB Polytechnic College, Guangzhou Guangdong 510507, China2. Office of Academic Affairs, Guangdong AIB Polytechnic College, Guangzhou Guangdong 510507, China
Abstract:The existing dimensionality reduction methods based on manifold learning are sensitive to the selection of local neighbors,and the reduced data do not have good separability.This paper proposed a dimensionality reduction method with data separability based on adaptive neighborhood selection,which adaptively selected the neighborhood at each sample point based on estimated intrinsic dimensionality of data and local tangent orientation.Meanwhile,it clustered the similar sample points by using clustering information when mapping data,which guaranteed good separability for the reduced data and achieved better dimensionality reduction results.The experimental results show that the new method derives a better embedding result on the artificially generated data sets.In addition,it can get expected result on face visualization classification and image retrieval.
Keywords:high-dimensional data  dimensionality reduction  manifold learning  local neighborhood  intrinsic dimensionality  local tangent orientation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号