首页 | 本学科首页   官方微博 | 高级检索  
     


Analog fault diagnosis of actual circuits using neural networks
Authors:Aminian   F. Aminian   M. Collins   H.W.   Jr.
Affiliation:Dept. Eng., St. Mary's Univ., San Antonio, TX;
Abstract:We have developed a neural-network based analog fault diagnostic system for actual circuits. Our system uses a data acquisition board to excite a circuit with an impulse and sample its output to collect training data for the neural network. The collected data is preprocessed by wavelet decomposition, normalization, and principal component analysis (PCA) to generate optimal features for training the neural network. This ensures a simple architecture for the neural network and minimizes the size of the training set required for its proper training. Our studies indicate that features extracted from actual circuits lie closer to each other and exhibit more overlap across fault classes compared to SPICE simulations. This implies that the neural network architecture which can most reliably perform fault diagnosis of actual circuits is one whose outputs estimate the probabilities that input features belong to different fault classes. Our work also shows that SPICE simulations can be used to select appropriate features for training the neural network. Reliable diagnosis of faults in an actual circuit, however, requires training data from the circuit itself. Our fault diagnostic system, trained and tested using data obtained from real sample circuits, achieves 95% accuracy in classifying faulty components
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号