首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of multi-objective evolutionary approaches for task scheduling in distributed computing systems
Authors:G SUBASHINI  M C BHUVANESWARI
Affiliation:1. Department of Information Technology, PSG College of Technology, Coimbatore, 641 004, India
Abstract:Parallel and distributed systems play an important part in the improvement of high performance computing. In these type of systems task scheduling is a key issue in achieving high performance of the system. In general, task scheduling problems have been shown to be NP-hard. As deterministic techniques consume much time in solving the problem, several heuristic methods are attempted in obtaining optimal solutions. This paper presents an application of Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) and a Non-dominated Sorting Particle Swarm Optimization Algorithm (NSPSO) to schedule independent tasks in a distributed system comprising of heterogeneous processors. The problem is formulated as a multi-objective optimization problem, aiming to obtain schedules achieving minimum makespan and flowtime. The applied algorithms generate Pareto set of global optimal solutions for the considered multi-objective scheduling problem. The algorithms are validated against a set of benchmark instances and the performance of the algorithms evaluated using standard metrics. Experimental results and performance measures infer that NSGA-II produces quality schedules compared to NSPSO.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号