首页 | 本学科首页   官方微博 | 高级检索  
     

Recent Developments in Predicting Impact and Shock Sensitivities of Energetic Materials (英)
引用本文:Mohammad Hossein Keshavarz,Arash Shokrolahi,Karim Esmailpoor,Abbas Zali,Hamid Reza Hafizi,Jamshid Azarniamehraban. Recent Developments in Predicting Impact and Shock Sensitivities of Energetic Materials (英)[J]. 含能材料, 2008, 16(1): 113-120
作者姓名:Mohammad Hossein Keshavarz  Arash Shokrolahi  Karim Esmailpoor  Abbas Zali  Hamid Reza Hafizi  Jamshid Azarniamehraban
作者单位:Departiment of Chemistry, Malek-ashtar Unlverslty'of Technology, Shahln-shahr P. O. Box 83145/115, Islamic Republic of Iran
摘    要:Empirical, quantum mechanical and artificial neural network methods are three usual methods in recent years that were used to predict sensitivity of different classes of high explosives. Some recent developments in predicting sensitivity by various methods are reviewed and discussed for various classes of energetic materials.

关 键 词:工程材料 撞击灵敏性 爆炸力学 经验主义 量子力学 人工神经网络
文章编号:1006-9941(2008)01-0113-08
收稿时间:2007-08-14
修稿时间:2007-09-17

Recent Developments in Predicting Impact and Shock Sensitivities of Energetic Materials
Mohammad Hossein Keshavarz,Arash Shokrolahi,Karim Esmailpoor,Abbas Zali,Hamid Reza Hafizi and Jamshid Azarniamehraban. Recent Developments in Predicting Impact and Shock Sensitivities of Energetic Materials[J]. Chinese Journal of Energetic Materials, 2008, 16(1): 113-120
Authors:Mohammad Hossein Keshavarz  Arash Shokrolahi  Karim Esmailpoor  Abbas Zali  Hamid Reza Hafizi  Jamshid Azarniamehraban
Affiliation:Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O.Box 83145/115, Islamic Republic of Iran
Abstract:Empirical, quantum mechanical and artificial neural network methods are three usual methods in recent years that were used to predict sensitivity of different classes of high explosives. Some recent developments in predicting sensitivity by various methods are reviewed and discussed for various classes of energetic materials.
Keywords:explosion mechanics  impact and shock sensitivity  empirical method  quantum mechanical method  artificial neural network method
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《含能材料》浏览原始摘要信息
点击此处可从《含能材料》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号