首页 | 本学科首页   官方微博 | 高级检索  
     

基于互联网信息的多约束多目标旅游路线推荐
引用本文:陆国锋,黄晓燕,吕绍和,王晓东. 基于互联网信息的多约束多目标旅游路线推荐[J]. 计算机工程与科学, 2016, 38(1): 163-170
作者姓名:陆国锋  黄晓燕  吕绍和  王晓东
作者单位:;1.国防科学技术大学并行与分布处理重点实验室;2.78086部队
基金项目:国家自然科学基金(61170260)
摘    要:针对新游客在陌生城市如何规划旅游路线的问题,研究基于景点评分机制以及用户多约束的旅游路线推荐问题。首先提取景点的开放时间、门票与GPS坐标等及旅游网站上对于景点的评价信息等;然后提出一种基于多约束的k贪心算法,可以为游客推荐较好的旅游线路,并有效消除了推荐系统对先验知识的依赖。以驴评网上北京著名景点的信息作为数据集,实现并评估了推荐算法。实验结果表明,该方法能够为用户提供准确合理的路线规划。

关 键 词:评分机制  景点综合信息  最优旅游线路
收稿时间:2014-12-18
修稿时间:2016-01-25

Multi-constraint and multi-objective trip recommendation based on internet information
LU Guo feng,HUANG Xiao yan,L Shao he,WANG Xiao dong. Multi-constraint and multi-objective trip recommendation based on internet information[J]. Computer Engineering & Science, 2016, 38(1): 163-170
Authors:LU Guo feng  HUANG Xiao yan  L Shao he  WANG Xiao dong
Affiliation:(1.National Key Laboratory of Parallel and Distributed Processing,National University of Defense Technology,Changsha  410073;2.Troops 78086,Chengdu 610017,China)
Abstract:To help a novice visitor to make a travel route plan in an unfamiliar city, we study on how to evaluate a prospective scenery spot and recommend visitors with multiple constraints and diverse objectives. We first extract specific information of an attraction from the Tourism website, including the score graded by visitors, opening time, the price of an entrance ticket, and the GPS coordinates. Afterwards, we propose a k greedy algorithm to generate a feasible trip recommendation with good performance, i.e. low cost and long stay time. Based on the datasets of the famous attractions in Beijing collected from the Lvping website, we implement and evaluate the proposed algorithm. Experimental results show that it can provide accurate and reasonable trip plans for users with diverse requirements.
Keywords:scoring mechanism  comprehensive information of tourist attraction  optimal route plan,
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号