首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于项目属性评分的协同过滤推荐算法
引用本文:龚安,高云,高洪福. 一种基于项目属性评分的协同过滤推荐算法[J]. 计算机工程与科学, 2015, 37(12): 2366-2371
作者姓名:龚安  高云  高洪福
作者单位:;1.中国石油大学(华东)计算机与通信工程学院
基金项目:中央高校基本科研业务费专项资金资助(14CX06150A)
摘    要:协同过滤是电子商务推荐系统中应用最成功的推荐技术之一,但面临着严峻的用户评分数据稀疏性和推荐精度低等问题。针对数据稀疏性高和单一评分导致的推荐精度低等问题,提出一种基于项目属性评分的协同过滤推荐算法。首先通过均值法或缩放法构造用户-项目属性评分矩阵将单一评分转化为多评分;其次基于每个属性评分矩阵,计算用户间的偏好相似度,得到目标用户的偏好最近邻居集;然后针对每个最近邻居集,在用户-项目评分矩阵上完成对目标用户的初步评分预测;最后,将多个初步预测评分加权求和作为综合评分,完成推荐。在Movie Lens扩展数据集上的实验结果表明,该算法能有效提高推荐精度。

关 键 词:属性评分  均值法  缩放法  协同过滤  推荐
收稿时间:2015-08-23
修稿时间:2015-12-25

A collaborative filtering recommendation algorithm based on ratings of item attributes
GONG An,GAO Yun,GAO Hong fu. A collaborative filtering recommendation algorithm based on ratings of item attributes[J]. Computer Engineering & Science, 2015, 37(12): 2366-2371
Authors:GONG An  GAO Yun  GAO Hong fu
Affiliation:(School of Computer & Communication Engineering,China University of Petroleum,Qingdao 266580,China)
Abstract:Collaborative filtering is one of the most successful techniques in E commerce recommender system. However, it faces severe problems of sparse user ratings and low recommendation accuracy. To solve the problems of lower recommendation quality caused by rating data sparseness and single rating, we propose a collaborative filtering recommendation algorithm based on ratings of item attributes. Firstly, we construct user item attribute rating matrices using the mean value method or scaling method to transform single rating to multi rating. Based on each rating matrix of attributes, we then calculate the similarity among users to obtain the preference set of the nearest neighbors, and accomplish a primary prediction for each set of the nearest neighbors based on user item rating matrices. Finally, we calculate the weighted sum of multiple primary predictions as the final scores, and then complete the recommendation. The experimental results on the extended datasets of Movie Lens show that the proposed algorithm can get higher recommendation accuracy than traditional algorithms.
Keywords:attribute rating  mean value method  scaling method  collaborative filtering  recommendation,
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号