首页 | 本学科首页   官方微博 | 高级检索  
     

使用二分图邻接矩阵的压缩传感图像快速重建
引用本文:向锦,李翠红,危德益,杨家红. 使用二分图邻接矩阵的压缩传感图像快速重建[J]. 计算机工程与应用, 2013, 49(1): 191-194,205
作者姓名:向锦  李翠红  危德益  杨家红
作者单位:湖南师范大学 工学院,长沙,410006
基金项目:湖南省自然科学基金重点项目,湖南省教育厅重点项目
摘    要:针对压缩传感中高维投影计算采用稀疏性较差的普通随机测量矩阵,从而导致计算复杂度高,重构性能不佳这一难题,提出一种基于二分图邻接矩阵的压缩传感图像快速重建算法。该算法在满足测量矩阵的RIP条件下,充分利用二分图邻接矩阵的稀疏性与二值性,将时间复杂度由传统算法的O(N·logN)降低至O(N)。实验结果表明,算法在保证图像重构质量情况下大大提高了运算性能,尤其对于色彩(灰度)变化平缓图像,该算法性能更加优越。

关 键 词:压缩传感  量测矩阵  二分图  邻接矩阵  稀疏矩阵

Fast reconstruction for compressive sensing image using adjacency matrix of bipartite graph
XIANG Jin , LI Cuihong , WEI Deyi , YANG Jiahong. Fast reconstruction for compressive sensing image using adjacency matrix of bipartite graph[J]. Computer Engineering and Applications, 2013, 49(1): 191-194,205
Authors:XIANG Jin    LI Cuihong    WEI Deyi    YANG Jiahong
Affiliation:College of Polytechnic, Hunan Normal University, Changsha 410006, China
Abstract:Random measurement matrix with low sparsity adopted in projections of high-dimensional data onto low-dimensional subspaces in compressive sensing theory has demerits of high computation complexity and low quality reconstructed image. A fast reconstruction algorithm of compressive sensing image based on adjacency matrix of bipartite graph is proposed. Based on the condition of satisfying RIP(Restricted Isoetry Property), the proposed algorithm makes full use of sparsity and intrinsic features of adjacency matrix of bipartite graph to achieve decrease of time complexity from O(N·log N)in traditional algorithms to O(N). Experiments demonstrate the proposed algorithm further improves computational performance as well as obtains high reconstructed image quality, especially for images with smooth changes of color or intensity.
Keywords:compressive sensing   sensing matrix   bipartite graph   adjacency matrix   sparse matrix
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号