首页 | 本学科首页   官方微博 | 高级检索  
     


Time-resolved optical sensing of oligonucleotide hybridization via Au colloidal nanoparticles
Authors:Liu Gang L  Rodriguez Victoria B  Lee Luke P
Affiliation:Biomolecular Nanotechnology Center, Berkeley Sensor and Actuator Center, Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA.
Abstract:Au nanoparticles have distinctive absorption spectra whose peak position or particle plasmon resonance wavelength is highly sensitive to molecule adsorption on their surfaces. Spherical Au nanoparticles are surface-modified by amino-functionalized self-assembly-monolayer and used as optical probes in the fluorescence-label-free spectroscopic detection of sub-nanomole oligonucleotides. Time-resolved studies of the immobilization and hybridization of oligonucleotides on the surface of Au nanoparticles were carried out. By measuring peak shift of absorption spectra of the Au colloidal nanoparticles over time, the samples of 15 nM 20 mer target and mismatched oligonucleotides are distinguished by their different influences on the particle plasmon resonance wavelength. The approach presented in this paper extends the application of Au nanoparticles as the optical probe in oligonucleotide recognitions without prior sample labeling.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号