首页 | 本学科首页   官方微博 | 高级检索  
     

Wigner-Ville分布在机械故障诊断中的研究
引用本文:蒋平,贾民平,许飞云,胡建中. Wigner-Ville分布在机械故障诊断中的研究[J]. 制造技术与机床, 2004, 0(7): 24-28
作者姓名:蒋平  贾民平  许飞云  胡建中
作者单位:东南大学设备监控与故障诊断研究所,江苏,南京,210096
摘    要:时频分布从时域特征与频域特征的结合途径揭示了信号的构成本质.文章介绍了基于WignerVille分布(WVD)的故障诊断方法,包括基于核函数抑制交叉项,时频分布与人工神经网络相结合,以及WVD的高阶谱.机械系统故障信号往往是非平稳的,联合时频分布是对故障信号分析的有力工具.WVD很高的能量聚集性和很好的时频分辨率,极大地提高了故障信号特征提取的准确度.

关 键 词:时频分布  信号处理  故障诊断  神经网络  高阶谱

The Research of Wigner- Ville Distribution in Machine Fault Diagnosing
JIANG Ping,JIA Minping,XU Feiyun,HU Jianzhong. The Research of Wigner- Ville Distribution in Machine Fault Diagnosing[J]. Manufacturing Technology & Machine Tool, 2004, 0(7): 24-28
Authors:JIANG Ping  JIA Minping  XU Feiyun  HU Jianzhong
Abstract:Quadratic time frequency uncover the feature of non-stationary signal on the basis of the combination of time domain and frequency domain. In this paper,a new fault diagnosing method based on WVD (Wigner-Ville Distribution ) was introduced,including cross term suppression based on kernel function, time-frequency distribution combining with Artificial Neural Network and Higher Order Spectrum of WVD. Machine fault signal was usually composed of non-stationary signals. Joint time frequency was a powerful tool to analyze fault signal. Due to high temporal and frequency resolution and high energy focus,the accuracy of fault signal feature extraction is greatly improved by WVD.
Keywords:Signal Processing  Fault Diagnosing  Time Freqency Distribution  Neural Network  Higher Order Spectrum
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号