首页 | 本学科首页   官方微博 | 高级检索  
     

基于形状特征k-d树的多维时间序列相似搜索
引用本文:黄河,史忠植,郑征. 基于形状特征k-d树的多维时间序列相似搜索[J]. 软件学报, 2006, 17(10): 2048-2056
作者姓名:黄河  史忠植  郑征
作者单位:中国科学院,计算技术研究所,北京,100080;中国科学院,研究生院,北京,100049;中国科学院,计算技术研究所,北京,100080
基金项目:国家自然科学基金;国家重点基础研究发展计划(973计划);北京市自然科学基金
摘    要:多维时间序列是信息系统中一类重要的数据对象,相似搜索是其应用的一个核心.两个序列(子序列)相似度加以比较的常用方法是:将序列(子序列)转换成空间中的曲线,然后计算曲线间的欧几里德距离.这种方法的主要缺陷是它仅考虑了序列(子序列)间的整体距离关系,而不能体现它们自身的局部变化.针对此问题,提出了一种新的可应用于多维时间序列的快速相似搜索方法.该方法将序列(子序列)的局部变化特性与检索结构(k-d树)结合起来,使得在搜索k-d树的同时实现了序列(子序列)的局部变化匹配,从而极大地提高了查询效率和正确率.实验结果表明了算法的有效性.

关 键 词:时间序列  相似搜索  欧氏距离  检索结构  k-d树
收稿时间:2004-03-03
修稿时间:2006-03-31

Similarity Search Based on Shape k-d Tree for Multidimensional Time Sequences
HUANG He,SHI Zhong-Zhi and ZHENG Zheng. Similarity Search Based on Shape k-d Tree for Multidimensional Time Sequences[J]. Journal of Software, 2006, 17(10): 2048-2056
Authors:HUANG He  SHI Zhong-Zhi  ZHENG Zheng
Affiliation:1.Institute of Computing Technology, The Chinese Academy of Sciences, B eijing 100080, China;2.Graduate School, The Chinese Academy of Sciences, Beijing 100049, China
Abstract:Multidimensional time sequences are an important kind of data stored in the information system. Similarity search is the core of their applications. Usually, these sequences are viewed as curves in multi-space, and the Euclidean Distance is computed to measure similarity between these curves. Although Euclidean Distance can reflect the whole deviation between two sequences or subsequences, it ignores their inherent changing features. To remedy it, this paper presents a new algorithm. In this algorithm, the shape features of sequences or subsequences are subtly combined with spatial index structure (k-d tree), which makes it possible to match shape of sequences or subsequences without any extra cost whiling searching the tree. The experimental result demonstrates that the algorithm is effective and efficient.
Keywords:time sequence  similarity search  Euclidean distance  index structure  k-d tree
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号