首页 | 本学科首页   官方微博 | 高级检索  
     


Degradation of cyanobacteria toxin by advanced oxidation processes
Authors:Al Momani Fares  Smith Daniel W  Gamal El-Din Mohamed
Affiliation:Department of Chemical Engineering, Mutah University, Jordan. fares1233@mutah.edu.jo
Abstract:Advanced oxidation processes (AOPs) using O(3), H(2)O(2), O(3)/H(2)O(2), O(3)/Fe(II), and Fenton treatment were investigated for the degradation of aqueous solutions of cyanobacteria. The effects of concentration of reactants, temperature, and pH on toxins degradation were monitored and the reaction kinetics was assessed. O(3) alone or combined with either H(2)O(2) or Fe(II) were efficient treatment for toxins elimination. A higher toxin oxidation tendency was observed with Fenton reaction; total toxins degradation (MC-LR and MC-RR) was achieved in only 60s. The ozonation treatment was successfully described by second-order kinetics model, with a first-order with respect to the concentration of either ozone or toxin. At 20 degrees C, with initial concentration of MC-LR of 1mg/L, the overall second-order reaction rate constant ranged from 6.79 x 10(4) to 3.49 x 10(3)M(-1)s(-1) as the solution pH increased from 2 to 11. The reaction kinetics of the other AOPs (O(3)/H(2)O(2), O(3)/Fe(II), and Fenton), were fitted to pseudo first-order kinetics. A rapid reaction was observed to took place at higher initial concentrations of O(3), H(2)O(2) and Fe(II), and higher temperatures. At pH 3, initial concentration of toxin of 1mg/L, the pseudo first-order rate constant, achieved by Fenton process, was in order of 8.76+/-0.7s(-1).
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号