首页 | 本学科首页   官方微博 | 高级检索  
     

进化高维多目标优化研究进展
引用本文:孙靖,巩敦卫. 进化高维多目标优化研究进展[J]. 控制理论与应用, 2018, 35(7): 928-938
作者姓名:孙靖  巩敦卫
作者单位:淮海工学院理学院;中国矿业大学信息与控制工程学院
基金项目:国家“973”计划项目(2014CB046306–2), 国家重点研发计划子课题(2018YFB1003802–01), 国家自然科学基金项目(61773384, 61703188, 6167 3404, 61763026)资助.
摘    要:高维多目标优化问题是目标个数多于3的多目标优化问题.尽管进化优化方法在多目标优化问题求解中显示了卓越的性能,但是,对于高维多目标优化问题,已有方法存在目标维数难以扩展、Pareto占优关系无法区分进化个体,以及多样性维护策略失效等困难.因此,高维多目标优化问题的高效求解引起进化优化界的高度关注.本文将分别从新型占优关系、多样性维护策略、目标缩减、目标聚合、基于性能指标的选择、融入偏好、集合进化、变化算子、可视化技术,以及应用等10个方面分类总结近年来进化高维多目标优化的研究成果,通过分析已有研究存在的问题,指出今后可能的研究方向.

关 键 词:高维多目标优化   进化优化   Pareto占优   目标缩减   偏好   集合进化
收稿时间:2018-01-22
修稿时间:2018-06-28

Recent advances in evolutionary many-objective optimization
SUN Jing and GONG Dun-wei. Recent advances in evolutionary many-objective optimization[J]. Control Theory & Applications, 2018, 35(7): 928-938
Authors:SUN Jing and GONG Dun-wei
Affiliation:Huaihai Institute of Technology,China University of Mining and Technology
Abstract:Many-objective optimization problems are multi-objective ones with more than three objectives. Evolutionary optimization methods have outstanding performances on multi-objective optimization problems. State-of-the-art evolutionary multi-objective optimization methods, however, exist a plenty of severe shortcomings when solving many-objective optimization problems, such as the curse of the objective dimensionality, the incapability of the Pareto dominance in distinguishing evolutionary individuals, and the inefficacy of the diversity maintenance strategies. Therefore, how to efficiently tackle many-objective optimization problems have been attracting scholars in the evolutionary optimization community. In this paper, we will comprehensively review recent advances in evolutionary many-objective optimization from such aspects as novel dominance relations, diversity maintenance strategies, objective reduction, objective aggregation, indicator-based selection, preference integration, set-based evolution, variation operators, visualization technology as well as applications, and suggest several important topics to be further researched by analyzing the existing problems.
Keywords:many-objective optimization   evolutionary optimization   pareto dominance   objective reduction   preference   set-based evolution   variation operator
本文献已被 CNKI 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号