首页 | 本学科首页   官方微博 | 高级检索  
     

有教师的线性基本函数前向三层神经网络结构研究
引用本文:高大启. 有教师的线性基本函数前向三层神经网络结构研究[J]. 计算机学报, 1998, 21(1): 80-86
作者姓名:高大启
作者单位:江苏理工大学信息科学研究所,镇江,212013
基金项目:江苏省自然科学基金,国家教委博士后基金
摘    要:优化选择隐节点数是人们在应用基于误差反传算法的有教师的线性基本函数前向三层神经网络过程中首先遇到的一个十分重要而又困难的问题。本文从国内外大量应用裕列中陪结归纳出了一个初定这种网络隐节点数的经验公式,提出了一种判断所选隐节点数是否多余的具体方法,并从理论上做了详细的推导。

关 键 词:线性基本函数 神经网络 拓扑结构 LBP网络
修稿时间:1997-03-12

ON STRUCTURES OF SUPERVISED LINEAR BASIS FUNCTION FEEDFORWARD THREE-LAYERED NEURAL NETWORKS
GAO Da-Qi. ON STRUCTURES OF SUPERVISED LINEAR BASIS FUNCTION FEEDFORWARD THREE-LAYERED NEURAL NETWORKS[J]. Chinese Journal of Computers, 1998, 21(1): 80-86
Authors:GAO Da-Qi
Abstract:How to optimally select the number of hidden nodes of a supervisedfeedforward three-layered neural network using linear basis function (LBF) basedon back-propagation (BP) algorithm is a very important and difficult problem forone to first surmount in applications. To solve it, an empirical formula for initiallyselecting the number of hidden nodes of this kind of networks is summarized and in-duced according to many application examples at home and abroad, and an elaboratemethod for judging whether there exist redundant hidden nodes in the hidden layerof such a selected network is proposed, and further, a detailed deduction in theoryis given. Two examples show that the empirical formula is reliable and that the newjudging method is simple.
Keywords:Linear basis function   neural networks   topological structures   empirical formula   error
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号