首页 | 本学科首页   官方微博 | 高级检索  
     

超密集网络中基于移动边缘计算的任务卸载和资源优化
引用本文:张海波, 李虎, 陈善学, 贺晓帆. 超密集网络中基于移动边缘计算的任务卸载和资源优化[J]. 电子与信息学报, 2019, 41(5): 1194-1201. doi: 10.11999/JEIT180592
作者姓名:张海波  李虎  陈善学  贺晓帆
作者单位:1.重庆邮电大学通信与信息工程学院 重庆 400065;;2.美国德克萨斯州拉玛尔大学电子工程系 美国 77710
基金项目:国家自然科学基金;国家自然科学基金;长江学者;创新团队发展计划;重庆市基础研究与前沿探索项目
摘    要:

移动边缘计算(MEC)通过在无线网络边缘为用户提供计算能力,来提高用户的体验质量。然而,MEC的计算卸载仍面临着许多问题。该文针对超密集组网(UDN)的MEC场景下的计算卸载,考虑系统总能耗,提出卸载决策和资源分配的联合优化问题。首先采用坐标下降法制定了卸载决定的优化方案。同时,在满足用户时延约束下采用基于改进的匈牙利算法和贪婪算法来进行子信道分配。然后,将能耗最小化问题转化为功率最小化问题,并将其转化为一个凸优化问题得到用户最优的发送功率。仿真结果表明,所提出的卸载方案可以在满足用户不同时延的要求下最小化系统能耗,有效地提升了系统性能。



关 键 词:超密集组网   移动边缘计算   计算卸载   资源分配
收稿时间:2018-06-13
修稿时间:2019-01-21

Computing Offloading and Resource Optimization in Ultra-dense Networks with Mobile Edge Computation
Haibo ZHANG, Hu LI, Shanxue CHEN, Xiaofan HE. Computing Offloading and Resource Optimization in Ultra-dense Networks with Mobile Edge Computation[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1194-1201. doi: 10.11999/JEIT180592
Authors:Haibo ZHANG  Hu LI  Shanxue CHEN  Xiaofan HE
Affiliation:1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;;2. Department of Electronic Engineering, Lamar University, TX 77710, USA
Abstract:Mobile Edge Computing (MEC) improves the quality of users experience by providing users with computing capabilities at the edge of the wireless network. However, computing offloading in MEC still faces some problems. In this paper, a joint optimization problem of offloading decision and resource allocation is proposed for the computation offloading problem in Ultra-Dense Networks (UDN) with MEC. To solve this problem, firstly, the coordinate descent method is used to formulate the optimization scheme for the offloading decision. Meanwhile, the improved Hungarian algorithm and greedy algorithm are used to allocate the channels to meet the user’s delay requirements. Finally, the problem of minimizing energy consumption is converted into a problem of minimizing power. Then it is converted into a convex optimization problem to get the user’s optimal transmission power. Simulation results show that the proposed scheme can minimize the energy consumption of the system while satisfying the users’ different delay requirements, and improve effectively the performance of the system.
Keywords:Ultra-Dense Networks (UDN)  Mobile Edge Computing (MEC)  Computing offloading  Resource allocation
本文献已被 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号