首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of bubble formation in microfluidic fuel cells employing hydrogen peroxide
Authors:Jin-Cherng Shyu  Cheng-Ling Huang
Affiliation:Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung80778, Taiwan
Abstract:In order to examine bubble evolution and discuss the effects of bubbles effect on the performance of microfluidic fuel cells, two 1.2-mm-depth microfluidic fuel cells employing 0.1-M H2O2 dissolved in 0.1-M NaOH solution and 0.05-M H2SO4 solution as fuel and oxidant, respectively, with transparent lids having width of 1.0 mm and 0.5 mm, are fabricated in the present study for both cell performance measurement and flow visualization. The results show that the present cells operating at either a higher volumetric flow or a smaller microchannel width yield both better performance and more violent bubble growth. The bubble growth rate, Qg, in a given microfluidic fuel cell is almost the same at different regions of that cell at a given volumetric flow rate, i.e. 10−5 cm3 s−1 and 5 × 10−5 cm3 s−1, respectively, for cells having widths of 0.5 mm and 1.0 mm at Ql = 0.05 mL min−1, and slightly increases at higher volumetric flow rates. Furthermore, the present study reports approximately constant values of Qg/CdA at various volumetric flow rates, which are 2 × 10−2 and 5 × 10−2 cm3 s−1 A−1, respectively, for cells having channel widths of 0.5 mm and 1.0 mm. In addition, the 0.5-mm-wide cell has higher cell output and performs more tortuous polarization curve.
Keywords:Microfluidic  Fuel cell  Bubble
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号