首页 | 本学科首页   官方微博 | 高级检索  
     


Heat/mass transfer measurement on concave surface in rotating jet impingement
Authors:Sung Kook Hong  Dong Hyun Lee  Hyung Hee Cho
Affiliation:(1) Department of Mechanical Engineering, Yonsei University, Seoul, 120-749, Korea
Abstract:The objective of this paper is to investigate the heat/mass transfer characteristics on a concave surface for rotating impinging jets. The jet with Reynolds number of 5,000 is applied to the concave surface and the flat surface, respectively. The rotating experiments have been carried out at the rotating speed of 560RPM which is corresponding to Ro number of 0.075. The two jet orientation (front and trailing orientation) are considered. Detailed heat/mass transfer coefficients on the target plate were measured using a naphthalene sublimation method. The result indicates that the rotation leads to change in local heat/mass transfer distributions and the slight increase in the Sh level. The front orientation induces asymmetric Sh distributions, whereas the trailing orientation shows the shifted heat/mass transfer feature due to rotation-induced flow behavior. The crossflow effect on heat/mass transfer is also observed as the streamwise direction increases. Compared to flat surface, the heat/mass transfer on the concave surface is enhanced with increasing the spanwise direction due to the curvature effect, providing the higher averaged Sh value. It is proved that the difference of surface geometry affects somewhat the local and averaged heat/mass transfer regardless of rotation condition. This paper was presented at the 9th Asian International Conference on Fluid Machinery (AICFM9), Jeju, Korea, October 16–19, 2007.
Keywords:Impinging jet  Heat/mass transfer  Naphthalene sublimation method  Rotation  Concave surface
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号