Motion detection with nonstationary background |
| |
Authors: | Ying Ren Chin-Seng Chua Yeong-Khing Ho |
| |
Affiliation: | (1) School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 , SG |
| |
Abstract: | Abstract. This paper proposes a new background subtraction method for detecting moving foreground objects from a nonstationary background. While background subtraction has traditionally worked well for a stationary background, the same cannot be implied for a nonstationary viewing sensor. To a limited extent, motion compensation for the nonstationary background can be applied. However, in practice, it is difficult to realize the motion compensation to sufficient pixel accuracy, and the traditional background subtraction algorithm will fail for a moving scene. The problem is further complicated when the moving target to be detected/tracked is small, since the pixel error in motion that is compensating the background will subsume the small target. A spatial distribution of Gaussians (SDG) model is proposed to deal with moving object detection having motion compensation that is only approximately extracted. The distribution of each background pixel is temporally and spatially modeled. Based on this statistical model, a pixel in the current frame is then classified as belonging to the foreground or background. For this system to perform under lighting and environmental changes over an extended period of time, the background distribution must be updated with each incoming frame. A new background restoration and adaptation algorithm is developed for the nonstationary background. Test cases involving the detection of small moving objects within a highly textured background and with a pan-tilt tracking system are demonstrated successfully. Received: 30 July 2001 / Accepted: 20 April 2002 Correspondence to: Chin-Seng Chau |
| |
Keywords: | : Foreground detection – Nonstationary background – SDG model – Background restoration – Background adaptation |
本文献已被 SpringerLink 等数据库收录! |
|