首页 | 本学科首页   官方微博 | 高级检索  
     


Defect-Induced Electron Redistribution between Pt-N3S1 Single Atomic Sites and Pt Clusters for Synergistic Electrocatalytic Hydrogen Production with Ultra-High Mass Activity
Authors:Minmin Wang  Chao Feng  Wanliang Mi  Mengdi Guo  Zekun Guan  Min Li  Hsiao-Chien Chen  Yunqi Liu  Yuan Pan
Affiliation:1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580 China;2. Research Institute of Petroleum Processing, Sinopec, Beijing, 100083 China;3. Center for Reliability Science and Technologies, Chang Gung University, Taoyuan, 33302 Taiwan
Abstract:A N, S co-doped carbon with abundant vacancy defects (NSC) anchored Pt single atoms (SAs) and nanoclusters (NCs) derived from coal pitch by a self-assembly-pyrolysis strategy is reported and a defect-induced electron redistribution effect based on Pt SAs-Pt NCs/NSC catalyst is proposed for electrocatalytic hydrogen evolution reaction (HER). The optimized catalyst featuring Pt-N3S1 SAs and Pt NCs dual active sites exhibit excellent HER activity with an overpotential of 192 mV at a current density of 400 mA cm−2, a turnover frequency of 30.1 s−1 at an overpotential of 150 mV, which the mass activity is 13716 mA mgPt−1, 7.4 times higher than that of 20% Pt/C catalyst. In situ Raman revealsa direct correlation between the defect structure of the catalyst and hydrogen adsorption during the reaction process. Density functional theory calculation shows the defect-induced electron redistribution between Pt-N3S1 SAs and Pt NCs. The electrons are transferred from Pt NCs to Pt SAs, which increases the number of electrons on the surface of Pt SAs and enhances the adsorption ability of H+. Meanwhile, the dissociation ability of H* on the Pt NCs is promoted, thus synergistically promoting the HER process.
Keywords:defect induction effect  hydrogen production  mass activity  single-atom catalysts  synergistic catalysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号