首页 | 本学科首页   官方微博 | 高级检索  
     

用壁板颤振理论解决某系列飞机的方向舵蒙皮裂纹故障
引用本文:安效民, 冯家悦, 周悦, 孙伟. 跨音速流中壁板流固耦合效应的形态演化分析[J]. 工程力学, 2022, 39(10): 36-47, 60. DOI: 10.6052/j.issn.1000-4750.2021.06.0444
作者姓名:安效民  冯家悦  周悦  孙伟
作者单位:西北工业大学航天学院空天飞行技术研究所,西安 710072
基金项目:国家自然科学基金项目 (12072278);航空科学基金项目(201901053001)
摘    要:高速飞行器部件多采用轻质薄壁加筋结构,当飞行器长时间跨音速或低超音速飞行时,这种薄壁结构在非定常气动载荷的作用下会表现出强非线性的流固耦合特征,其中激波运动、边界层效应、流动分离等流场非线性与几何大变形等结构非线性相互耦合作用会使壁板产生失稳行为,引起结构疲劳或损毁。该文基于CFD/CSD耦合数值模拟技术,预测和判别壁板在跨音速气流中随马赫数变化过程中响应形态,发现在跨音速区内会出现明显的单模态颤振形式。随马赫数的增大,其形态演化次序为稳态收敛、第一模态极限环振荡、屈曲、稳态收敛、跨音速颤振、非共振型极限环振荡、共振型极限环振荡、高频周期振荡、高频非周期振荡、第一模态极限环振荡到稳态收敛的过程。当壁板厚度增加、来流密度减小,演化形态会发生变化。同时,当考虑非定常加速效应和粘性效应后,会出现一定的延迟和阻尼效应,对高频非周期振荡起到抑制作用,这对于降低结构的疲劳损伤有积极效果。

关 键 词:流固耦合  非线性壁板颤振  极限环振荡  单模态颤振  跨音速  CFD/CSD耦合方法  可重复使用火箭
收稿时间:2021-06-09
修稿时间:2021-11-30

Historical development of air craft flutter
AN Xiao-min, FENG Jia-yue, ZHOU Yue, SUN Wei. MORPHOLOGICAL EVOLUTION ANALYSIS OF FLUID-STRUCTURE INTERACTION OF PANELS IN TRANSONIC DOMAIN[J]. Engineering Mechanics, 2022, 39(10): 36-47, 60. DOI: 10.6052/j.issn.1000-4750.2021.06.0444
Authors:AN Xiao-min  FENG Jia-yue  ZHOU Yue  SUN Wei
Affiliation:Shaanxi Aerospace Flight Vehicle Design Key Laboratory, School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
Abstract:The lightweight thin-walled stiffened structure composed of skeletons and skins is mostly applied in the wings and bodies of high-speed flight vehicles. When the vehicles are flying at transonic or low-supersonic speed for a long time, this thin-walled structure will show strong nonlinear fluid-solid coupling characteristics under unsteady aerodynamic loads. Among them, the nonlinear interaction between fluid nonlinearity such as shock-wave movement, boundary layer effect, flow separation and geometric large deformation will cause the unstable behavior of the panel, thusly result in structural fatigue or damage. Based on CFD/CSD coupling method, this paper predicts and discriminates the response of the panel in the transonic domain with Mach number. It is found that single-mode flutter occurs in the transonic regime, and there will be the convergence, first-mode LCO, buckling, transonic flutter, non-resonant LCO, resonant LCO, high-frequency periodic oscillation, high-frequency non-periodic oscillation, and so on for the shape evolvements with the Mach number. The evolution pattern changes when the thickness of the panel increases, and the incoming flow density decreases. Furthermore, there will be a delay and damping effect, which can suppress the high-frequency non-periodic oscillation when considering the unsteady acceleration and viscous effects. It has a positive effect on reducing the fatigue damage of the structure.
Keywords:fluid-structure interaction  nonlinear panel flutter  limit cycle oscillations  single-mode flutter  transonic flow  CFD/CSD coupling method  reusable rocket
点击此处可从《工程力学》浏览原始摘要信息
点击此处可从《工程力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号