首页 | 本学科首页   官方微博 | 高级检索  
     

远场合成孔径计算光学成像技术:文献综述与最新进展
引用本文:李晟,王博文,管海涛,等. 远场合成孔径计算光学成像技术:文献综述与最新进展[J]. 光电工程,2023,50(10): 230090. doi: 10.12086/oee.2023.230090
作者姓名:李晟  王博文  管海涛  梁坤瑶  胡岩  邹燕  张许  陈钱  左超
作者单位:1. 南京理工大学电子工程与光电技术学院,智能计算成像实验室(SCILab),江苏 南京 210094; 2. 南京理工大学智能计算成像研究院(SCIRI),江苏 南京 210019; 3. 江苏省光谱成像与智能感知重点实验室,江苏 南京 210094; 4. 陆军装备部驻南京军事代表处,江苏 南京 210024
基金项目:国家自然科学基金资助项目(U21B2033, 61905115, 62105151, 62175109);国家重大科研仪器研制项目(62227818);江苏省基础研究计划前沿引领专项(BK20192003);光电测量与智能感知中关村开放实验室与北京控制工程研究所空间光电测量与感知实验室开放基金资助项目(LabSOMP-2022-05);江苏省科技计划重点国别产业技术研发合作项目(BZ2022039);中央高校科研专项资助项目(30920032101);江苏省光谱成像与智能感知重点实验室开放基金资助项目(JSGP202105, JSGP202201)
摘    要:

传统光学成像实质上是目标场景的光强信号在空间维度上的直接均匀采样记录与再现的过程。因此,其成像分辨率与信息量不可避免地受到光学衍射极限、成像系统空间带宽积等若干物理条件制约。如何突破这些物理制约,获得更高分辨率、更宽广的图像信息,一直是该领域的永恒课题。计算光学成像通过前端光学调控与后端信号处理相结合,为突破成像系统的衍射极限限制,实现超分辨成像提供了新思路。本文综述了基于计算光学合成孔径成像实现成像分辨率的提升以及空间带宽积拓展的相关研究工作,主要包括基于相干主动合成孔径成像与非相干被动合成孔径成像的基础理论及关键技术。本文进一步揭示了当前“非相干、无源被动、超衍射极限”成像的迫切需求及其现阶段存在的瓶颈问题,并展望了今后的研究方向以及解决这些问题可能的技术途径。



关 键 词:光学合成孔径探测   计算成像   超分辨   傅里叶叠层   非相干合成孔径   远场成像
收稿时间:2023-04-20
修稿时间:2023-06-28

Far-field computational optical imaging techniques based on synthetic aperture: a review
Li S, Wang B W, Guan H T, et al. Far-field computational optical imaging techniques based on synthetic aperture: a review[J]. Opto-Electron Eng, 2023, 50(10): 230090. doi: 10.12086/oee.2023.230090
Authors:Li Sheng  Wang Bowen  Guan Haitao  Liang Kunyao  Hu Yan  Zou Yan  Zhang Xu  Chen Qian  Zuo Chao
Affiliation:1. Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; 2. Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu 210019, China; 3. Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu 210094, China; 4. Military Representative Office of Army Equipment Department in Nanjing, Nanjing, Jiangsu 210024, China
Abstract:Conventional optical imaging is essentially a process of recording and reproducing the intensity signal of a scene in the spatial dimension with direct uniform sampling. Therefore, the resolution and information content of imaging are inevitably constrained by several physical limitations, such as optical diffraction limit and spatial bandwidth product of the imaging system. How to break these physical limitations and obtain higher resolution and broader image field of view has been an eternal topic in this field. Computational optical imaging, by combining front-end optical modulation with back-end signal processing, offers a new approach to surpassing the diffraction limit of imaging systems and realizing super-resolution imaging. In this paper, we introduce the relevant research efforts on improving imaging resolution and expanding the spatial bandwidth product through computational optical synthetic aperture imaging, including the basic theory and technologies based on coherent active synthetic aperture imaging and incoherent passive synthetic aperture imaging. Furthermore, this paper reveals the pressing demand for "incoherent, passive, and beyond-diffraction-limit" imaging, identifies the bottlenecks, and provides an outlook on future research directions and potential technical approaches to address these challenges.
Keywords:optical synthetic aperture detection  computational imaging  super resolution  Fourier ptychography  incoherent synthetic aperture  far-field imaging
点击此处可从《光电工程》浏览原始摘要信息
点击此处可从《光电工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号