首页 | 本学科首页   官方微博 | 高级检索  
     

小波变换在遥感图像云雾处理中的应用
引用本文:朱锡芳,吴峰,庄燕滨. 小波变换在遥感图像云雾处理中的应用[J]. 微电子学与计算机, 2006, 23(12): 50-52
作者姓名:朱锡芳  吴峰  庄燕滨
作者单位:常州工学院,江苏,常州,213002
摘    要:分析受云雾影响的遥感图像频率分布的特征,云雾处于相对低频、景物处于相对高频。根据小波变换多分辨率特点.图像经多层小波分解,得到的低层细节系数代表图像的相对高频部分,高层细节系数代表图像的相对低频部分。提出通过增大图像的高频细节系数,减小低频细节系数,保持最低层近似系数,达到去云雾目的。利用视觉评价、均值、标准差、熵、平均梯度等方法评价实验结果,表明算法的有效性。

关 键 词:遥感成像  小波系数  多分辨率分析  图像处理
文章编号:1000-7180(2006)12-0050-03
收稿时间:2005-11-15
修稿时间:2005-11-15

Thin Cloud and Mist Reduction from Remote Sensing Images Based on Wavelet Transformation
ZHU Xi-fang,WU Feng,ZHUANG Yan-bin. Thin Cloud and Mist Reduction from Remote Sensing Images Based on Wavelet Transformation[J]. Microelectronics & Computer, 2006, 23(12): 50-52
Authors:ZHU Xi-fang  WU Feng  ZHUANG Yan-bin
Affiliation:Changzhou Institute of Tec hnology, Changzhou 213002, China
Abstract:By analyzing the frequency distribution characteristics of the remote sensing multispectral image influenced by thin cloud and mist in both the theory and the practical application aspects, we conclude that the underlying bed detail coefficient represents the relatively high-frequency of the image, the high level detail coefficient represents the relatively low frequency band of the image. This paper proposes a novel method which can effectively strengthen the high-frequency component of an image and weaken its low frequency component based on the characteristics of the multi-resolution of the wavelet transform, and achieve goal of thin cloud and mist reduction. The experimental results the proposed algorithm are evaluated by using visual perception, mean value, standard differences, entropy, and average gradient, and are found to be satisfactory.
Keywords:Remote sensing image   Wavelet coefficient   Multi-resolution analysis   Image processing
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号